Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(11): 159395, 2023 Nov.
Article En | MEDLINE | ID: mdl-37729963

Recently, we reported the TRPV4 ion channel activation and its association with secondary damage after spinal cord injury (SCI). TRPV4 activation is linked with blood-spinal cord barrier (BSCB) disruption, endothelial damage, and inflammation after SCI. Specialized pro-resolving mediators (SPM) are endogenous lipid mediators released for inflammation resolution. Studies suggest that SPM could act as an endogenous antagonist of ion channels directly or indirectly at the plasma membrane. Herein, we studied the effect of maresin-1, a docosahexaenoic acid (DHA)-derived SPM, in SCI-induced TRPV4 expression and subsequent associated damage. First, employing a particular agonist (4αPDD) in endothelial and neuronal cell lines, we examined the potential of maresin-1 to block TRPV4 activation. Then we quantify the DHA levels in plasma and epicenter of the spinal cord in sham and at 1, 3, 7, 14, 21, and 28-days post-injury (DPI) using LC-MS. Then, we exogenously administered maresin-1 using two dosing regimens i.e., single-dose (1 µg) and multiple-dose (1 µg/day for seven days), to confirm its role in the TRPV4 inhibition and its linked damage. After SCI, DHA levels decrease in the spinal cord epicenter area as well as in the plasma. Treatment with maresin-1 attenuates TRPV4 expression, inflammatory cytokines, and chemokines and impedes neutrophil infiltration. Furthermore, treatment with maresin-1 prevents BSCB disruption, alleviates glial scar formation, and improves functional recovery. Thus, our results suggest that maresin-1 could modulate TRPV4 expression and could be a safe and promising approach to target inflammation and BSCB damage after SCI.

2.
Cell Mol Neurobiol ; 43(7): 3375-3391, 2023 Oct.
Article En | MEDLINE | ID: mdl-37477786

Erythropoietin-producing hepatocellular carcinoma A4 (EphA4) is a transmembrane receptor protein which is a part of the most prominent family of receptor tyrosine kinases (RTKs). It serves a crucial role in both physiological, biological, and functional states binding with their ligand like Ephrins. Its abundance in the majority of the body's systems has been reported. Moreover, it draws much attention in the CNS since it influences axonal and vascular guidance. Also, it has a widespread role at the pathological state of various CNS disorders. Reports suggest it obstructs axonal regeneration in various neurodegenerative diseases and neurological disorders. Although, neuro-regeneration is still an open challenge to the modern drug discovery community.  Hence, in this review, we will provide information about the role of EphA4 in neurological diseases by which it may emerge as a therapeutic target for CNS disease. We will also provide a glance at numerous signaling pathways that activate or inhibit the EphA4-associated biological processes contributing to the course of neurodegenerative diseases. Thus, this work might serve as a basis for futuristic studies that are related to the target-based drug discovery in the field of neuro-regeneration. Pathological and physiological events associated with EphA4 and Ephrin upregulation and interaction.


Carcinoma, Hepatocellular , Erythropoietin , Liver Neoplasms , Nervous System Diseases , Humans , Protein Binding , Nervous System Diseases/drug therapy
3.
Cell Mol Neurobiol ; 43(4): 1519-1535, 2023 May.
Article En | MEDLINE | ID: mdl-35945301

Endothelial cells (ECs) and pericytes are present in all blood vessels. Their position confers an important role in controlling oxygen and nutrient transportation to the different organs. ECs can adopt different morphologies based on their need and functions. Both ECs and pericytes express different surface markers that help in their identification, but heterogeneity and overlapping between markers among different cells pose a challenge for their precise identification. Spatiotemporal association of ECs and pericytes have great importance in sprout formation and vessel stabilization. Any traumatic injury in CNS may lead to vascular damage along with neuronal damage. Hence, ECs-pericyte interaction by physical contact and paracrine molecules is crucial in recovering the epicenter region by promoting angiogenesis. ECs can transform into other types of cells through endothelial-mesenchymal transition (EndMT), promoting wound healing in the epicenter region. Various signaling pathways mediate the interaction of ECs with pericytes that have an extensive role in angiogenesis. In this review, we discussed ECs and pericytes surface markers, the spatiotemporal association and interaction of ECs-pericytes, and signaling associated with the pathology of traumatic SCI. Linking the brain or spinal cord-specific pathologies and human vascular pathology will pave the way toward identifying new therapeutic targets and developing innovative preventive strategies. Endothelial-pericyte interaction strategic for formation of functional neo-vessels that are crucial for neurological recovery.


Endothelial Cells , Neovascularization, Physiologic , Humans , Endothelial Cells/metabolism , Signal Transduction , Pericytes/pathology , Spinal Cord
4.
Neurospine ; 19(3): 646-668, 2022 Sep.
Article En | MEDLINE | ID: mdl-36203291

Traumatic spinal cord injury (SCI) is the devastating neurological damage to the spinal cord that becomes more complicated in the secondary phase. The secondary injury comes with inevitable long-lasting complications, such as chronic neuropathic pain (CNP) and spasticity which interfere with day to day activities of SCI patients. Mechanisms underlying CNP post-SCI are complex and remain refractory to current medical treatment. Due to the damage, extensive inhibitory, excitatory tone dysregulation causes maladaptive synaptic transmissions, further altering the nociceptive and nonnociceptive pathways. Excitotoxicity mediated GABAergic cell loss, downregulation of glutamate acid decarboxylase enzyme, upregulation of gamma-aminobutyric acid (GABA) transporters, overactivation of glutamate receptors are some of the key evidence for hypoactive inhibitory tone contributing to CNP and spasticity post-SCI. Restoring the inhibitory GABAergic tone and preventing damage-induced excitotoxicity by employing various strategies provide neuroprotective and analgesic effects. The present article will discuss CNP and spasticity post-SCI, understanding their pathophysiological mechanisms, especially GABA-glutamate-related mechanisms, therapeutic interventions targeting them, and progress regarding how regulating the excitatory-inhibitory tone may lead to more targeted treatments for these distressing complications. Taking background knowledge of GABAergic analgesia and recent advancements, we aim to highlight how far we have reached in promoting inhibitory GABAergic tone for SCI-CNP and spasticity.

...