Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Oncoimmunology ; 11(1): 2012961, 2022.
Article En | MEDLINE | ID: mdl-36524209

Tumor-specific T cells likely underpin effective immune checkpoint-blockade therapies. Yet, most studies focus on Treg cells and CD8+ tumor-infiltrating lymphocytes (TILs). Here, we study CD4+ TILs in human lung and colorectal cancers and observe that non-Treg CD4+ TILs average more than 70% of total CD4+ TILs in both cancer types. Leveraging high dimensional analyses including mass cytometry, we reveal that CD4+ TILs are phenotypically heterogeneous, within each tumor and across patients. Consistently, we find different subsets of CD4+ TILs showing characteristics of effectors, tissue resident memory (Trm) or exhausted cells (expressing PD-1, CTLA-4 and CD39). In both cancer types, the frequencies of CD39- non-Treg CD4+ TILs strongly correlate with frequencies of CD39- CD8+ TILs, which we and others have previously shown to be enriched for cells specific for cancer-unrelated antigens (bystanders). Ex-vivo, we demonstrate that CD39- CD4+ TILs can be specific for cancer-unrelated antigens, such as HCMV epitopes. Overall, our findings highlight that CD4+ TILs can also recognize cancer-unrelated antigens and suggest measuring CD39 expression as a straightforward way to quantify or isolate bystander CD4+ T cells.


CD8-Positive T-Lymphocytes , Lung Neoplasms , Humans , Lymphocytes, Tumor-Infiltrating/pathology , T-Lymphocytes, Regulatory
2.
Proc Natl Acad Sci U S A ; 119(31): e2120028119, 2022 08 02.
Article En | MEDLINE | ID: mdl-35878027

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of pancreatic ß-cells. One of the earliest aspects of this process is the development of autoantibodies and T cells directed at an epitope in the B-chain of insulin (insB:9-23). Analysis of microbial protein sequences with homology to the insB:9-23 sequence revealed 17 peptides showing >50% identity to insB:9-23. Of these 17 peptides, the hprt4-18 peptide, found in the normal human gut commensal Parabacteroides distasonis, activated both human T cell clones from T1D patients and T cell hybridomas from nonobese diabetic (NOD) mice specific to insB:9-23. Immunization of NOD mice with P. distasonis insB:9-23 peptide mimic or insB:9-23 peptide verified immune cross-reactivity. Colonization of female NOD mice with P. distasonis accelerated the development of T1D, increasing macrophages, dendritic cells, and destructive CD8+ T cells, while decreasing FoxP3+ regulatory T cells. Western blot analysis identified P. distasonis-reacting antibodies in sera of NOD mice colonized with P. distasonis and human T1D patients. Furthermore, adoptive transfer of splenocytes from P. distasonis-treated mice to NOD/SCID mice enhanced disease phenotype in the recipients. Finally, analysis of human children gut microbiome data from a longitudinal DIABIMMUNE study revealed that seroconversion rates (i.e., the proportion of individuals developing two or more autoantibodies) were consistently higher in children whose microbiome harbored sequences capable of producing the hprt4-18 peptide compared to individuals who did not harbor it. Taken together, these data demonstrate the potential role of a gut microbiota-derived insB:9-23-mimic peptide as a molecular trigger of T1D pathogenesis.


Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Molecular Mimicry , Peptides , Animals , Autoantibodies/immunology , Bacteroidetes , CD8-Positive T-Lymphocytes , Child , Diabetes Mellitus, Type 1/pathology , Female , Humans , Insulin/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Peptides/chemistry
3.
Front Immunol ; 13: 1015855, 2022.
Article En | MEDLINE | ID: mdl-36703975

Introduction: Previous studies verify the formation of enzymatically post-translationally modified (PTM) self-peptides and their preferred recognition by T cells in subjects with type 1 diabetes (T1D). However, questions remain about the relative prevalence of T cells that recognize PTM self-peptides derived from different antigens, their functional phenotypes, and whether their presence correlates with a specific disease endotype. Methods: To address this question, we identified a cohort of subjects with T1D who had diverse levels of residual beta cell function. Using previously developed HLA class II tetramer reagents, we enumerated T cells that recognize PTM GAD epitopes in the context of DRB1*04:01 or PTM IA2 epitopes in the context of DQB1*03:02 (DQ8). Results: Consistent with prior studies, we observed higher overall frequencies and a greater proportion of memory T cells in subjects with T1D than in HLA matched controls. There were significantly higher numbers of GAD specific T cells than IA2 specific T cells in subjects with T1D. T cells specific for both groups of epitopes could be expanded from the peripheral blood of subjects with established T1D and at-risk subjects. Expanded neo-epitope specific T cells primarily produced interferon gamma in both groups, but a greater proportion of T cells were interferon gamma positive in subjects with T1D, including some poly-functional cells that also produced IL-4. Based on direct surface phenotyping, neo-epitope specific T cells exhibited diverse combinations of chemokine receptors. However, the largest proportion had markers associated with a Th1-like phenotype. Notably, DQ8 restricted responses to PTM IA2 were over-represented in subjects with lower residual beta cell function. Neo-epitope specific T cells were present in at-risk subjects, and those with multiple autoantibodies have higher interferon gamma to IL-4 ratios than those with single autoantibodies, suggesting a shift in polarization during progression. Discussion: These results reinforce the relevance of PTM neo-epitopes in human disease and suggest that distinct responses to neo-antigens promote a more rapid decline in beta cell function.


Diabetes Mellitus, Type 1 , T-Lymphocytes , Humans , Autoantibodies , Epitopes , Interferon-gamma , Interleukin-4 , Peptides , T-Lymphocytes/immunology
4.
Methods Mol Biol ; 2285: 153-163, 2021.
Article En | MEDLINE | ID: mdl-33928551

Peptide-major histocompatibility complex class II (pMHCII) multimers have emerged as a convenient and powerful tool for characterization of CD4 T cell immune responses in a large variety of human diseases. Peptide-MHCII multimers can rapidly identify peptide antigens recognized by CD4 T cells via high-throughput peptide screening procedures. The specificity and phenotype of antigen-specific CD4 T cells can be effectively visualized by pMHCII multimers from unmanipulated immune cell populations. Functional attributes of antigen-specific CD4 T cells can also be defined with the multimer technology in combination with immune functional assays such as intracellular cytokine staining (ICS).


CD4-Positive T-Lymphocytes/immunology , Cell Separation , Epitope Mapping , Epitopes , Flow Cytometry , Histocompatibility Antigens Class II/immunology , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Cytokines/metabolism , High-Throughput Screening Assays , Histocompatibility Antigens Class II/metabolism , Humans , Phenotype , Protein Multimerization , Research Design , Workflow
5.
Gastroenterology ; 160(3): 720-733.e8, 2021 02.
Article En | MEDLINE | ID: mdl-33130104

BACKGROUND & AIMS: Gluten challenge is used to diagnose celiac disease (CeD) and for clinical research. Sustained gluten exposure reliably induces histologic changes but is burdensome. We investigated the relative abilities of multiple biomarkers to assess disease activity induced by 2 gluten doses, and aimed to identify biomarkers to supplement or replace histology. METHODS: In this randomized, double-blind, 2-dose gluten-challenge trial conducted in 2 US centers (Boston, MA), 14 adults with biopsy-proven CeD were randomized to 3 g or 10 g gluten/d for 14 days. The study was powered to detect changes in villous height to crypt depth, and stopped at planned interim analysis on reaching this end point. Additional end points included gluten-specific cluster of differentiation (CD)4 T-cell analysis with HLA-DQ2-gluten tetramers and enzyme-linked immune absorbent spot, gut-homing CD8 T cells, interleukin-2, symptoms, video capsule endoscopy, intraepithelial leukocytes, and tissue multiplex immunofluorescence. RESULTS: All assessments showed changes with gluten challenge. However, time to maximal change, change magnitude, and gluten dose-response relationship varied. Villous height to crypt depth, video capsule endoscopy enteropathy score, enzyme-linked immune absorbent spot, gut-homing CD8 T cells, intraepithelial leukocyte counts, and HLA-DQ2-restricted gluten-specific CD4 T cells showed significant changes from baseline at 10 g gluten only; symptoms were significant at 3 g. Symptoms and plasma interleukin-2 levels increased significantly or near significantly at both doses. Interleukin-2 appeared to be the earliest, most sensitive marker of acute gluten exposure. CONCLUSIONS: Modern biomarkers are sensitive and responsive to gluten exposure, potentially allowing less invasive, lower-dose, shorter-duration gluten ingestion. This work provides a preliminary framework for rational design of gluten challenge for CeD research. ClinicalTrials.gov number, NCT03409796.


Celiac Disease/diagnosis , Glutens/administration & dosage , Immunologic Tests/methods , Adult , Biomarkers/blood , CD4-Positive T-Lymphocytes/immunology , Celiac Disease/blood , Celiac Disease/immunology , Double-Blind Method , Enzyme-Linked Immunosorbent Assay , Female , Glutens/immunology , HLA-DQ Antigens/blood , HLA-DQ Antigens/immunology , Humans , Male , Middle Aged , Young Adult
6.
Sci Rep ; 10(1): 15686, 2020 09 24.
Article En | MEDLINE | ID: mdl-32973217

Monitoring the frequency of circulatory CXCR5+ (cCXCR5+) CD4+ T cells in periphery blood provides a potential biomarker to draw inferences about T follicular helper (TFH) activity within germinal center. However, cCXCR5+ T cells are highly heterogeneous in their expression of ICOS, PD1 and CD38 and the relationship between different cCXCR5 subsets as delineated by these markers remains unclear. We applied class II tetramer reagents and mass cytometry to investigate the ontogeny of different subsets of cCXCR5+ T cell following yellow fever immunization. Through unsupervised analyses of mass cytometry data, we show yellow fever virus-specific cCXCR5 T cells elicited by vaccination were initially CD38+ICOS+PD1+, but then transitioned to become CD38+ICOS-PD1+ and CD38-ICOS-PD1+ before coming to rest as a CD38-ICOS-PD1- subset. These results imply that most antigen-specific cCXCR5+ T cells, including the CD38-ICOS-PD1- CXCR5+ T cells are derived from the CXCR5+CD38+ICOS+PD1+ subset, the subset that most resembles preTFH/TFH in the germinal center.


CD4-Positive T-Lymphocytes/immunology , T-Lymphocytes, Helper-Inducer/immunology , Vaccination , Yellow Fever Vaccine/immunology , Yellow Fever/prevention & control , CD4-Positive T-Lymphocytes/metabolism , Germinal Center/immunology , Germinal Center/metabolism , Humans , Receptors, CXCR5/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Helper-Inducer/metabolism
7.
Diabetes ; 69(7): 1492-1502, 2020 07.
Article En | MEDLINE | ID: mdl-32291282

T cells isolated from the pancreatic infiltrates of nonobese diabetic mice have been shown to recognize epitopes formed by the covalent cross-linking of proinsulin and secretory granule peptides. Formation of such hybrid insulin peptides (HIPs) was confirmed through mass spectrometry, and responses to HIPs were observed among the islet-infiltrating T cells of pancreatic organ donors and in the peripheral blood of individuals with type 1 diabetes (T1D). However, questions remain about the prevalence of HIP-specific T cells in humans, the sequences they recognize, and their role in disease. We identified six novel HIPs that are recognized in the context of DRB1*04:01, discovered by using a library of theoretical HIP sequences derived from insulin fragments covalently linked to one another or to fragments of secretory granule proteins or other islet-derived proteins. We demonstrate that T cells that recognize these HIPs are detectable in the peripheral blood of subjects with T1D and exhibit an effector memory phenotype. HIP-reactive T-cell clones produced Th1-associated cytokines and proliferated in response to human islet preparations. These results support the relevance of HIPs in human disease, further establishing a novel posttranslational modification that may contribute to the loss of peripheral tolerance in T1D.


HLA-DRB1 Chains/immunology , Insulin/immunology , Peptide Fragments/immunology , T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Cross Reactions , Diabetes Mellitus, Type 1/immunology , Epitopes , Humans , Insulin/chemistry , Insulin-Secreting Cells/immunology , Peptide Fragments/chemistry
8.
Sci Immunol ; 5(44)2020 02 14.
Article En | MEDLINE | ID: mdl-32060144

The DRB1*15:01-DQB1*06:02 (DR1501-DQ6) haplotype is linked to dominant protection from type 1 diabetes, but the cellular mechanism for this association is unclear. To address this question, we identified multiple DR1501- and DQ6-restricted glutamate decarboxylase 65 (GAD65) and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific T cell epitopes. Three of the DR1501/DQ6-restricted epitopes identified were previously reported to be restricted by DRB1*04:01/DRB1*03:01/DQB1*03:02. We also used specific class II tetramer reagents to assess T cell frequencies. Our results indicated that GAD65- and IGRP-specific effector and CD25+CD127-FOXP3+ regulatory CD4+ T cells were present at higher frequencies in individuals with the protective haplotype than those with susceptible or neutral haplotypes. We further confirmed higher frequencies of islet antigen-specific effector and regulatory CD4+ T cells in DR1501-DQ6 individuals through a CD154/CD137 up-regulation assay. DR1501-restricted effector T cells were capable of producing interferon-γ (IFN-γ) and interleukin-4 (IL-4) but were more likely to produce IL-10 compared with effectors from individuals with susceptible haplotypes. To evaluate their capacity for antigen-specific regulatory activity, we cloned GAD65 and IGRP epitope-specific regulatory T cells. We showed that these regulatory T cells suppressed DR1501-restricted GAD65- and IGRP-specific effectors and DQB1*03:02-restricted GAD65-specific effectors in an antigen-specific fashion. In total, these results suggest that the protective DR1501-DQ6 haplotype confers protection through increased frequencies of islet-specific IL-10-producing T effectors and CD25+CD127-FOXP3+ regulatory T cells.


CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Haplotypes , Insulin-Secreting Cells/immunology , Diabetes Mellitus, Type 1/pathology , Epitopes, T-Lymphocyte/immunology , Healthy Volunteers , Humans
9.
Sci Adv ; 5(8): eaaw9336, 2019 08.
Article En | MEDLINE | ID: mdl-31457096

Human leukocyte antigen (HLA)-DQ8 transdimer (HLA-DQA1*0501/DQB1*0302) confers exceptionally high risk in autoimmune diabetes. However, little is known about HLA-DQ8 transdimer-restricted CD4 T cell recognition, an event crucial for triggering HLA-DQ8 transdimer-specific anti-islet immunity. Here, we report a high degree of epitope overlap and T cell promiscuity between susceptible HLA-DQ8 and HLA-DQ8 transdimer. Despite preservation of putative residues for T cell receptor (TCR) contact, stronger disease-associated responses to cross-reactive, immunodominant islet epitopes are elicited by HLA-DQ8 transdimer. Mutagenesis at the α chain of HLA-DQ8 transdimer in complex with the disease-relevant GAD65250-266 peptide and in silico analysis reveal the DQ α52 residue located within the N-terminal edge of the peptide-binding cleft for the enhanced T cell reactivity, altering avidity and biophysical affinity between TCR and HLA-peptide complexes. Accordingly, a structurally promiscuous but nondegenerate TCR-HLA-peptide interface is pivotal for HLA-DQ8 transdimer-mediated autoimmune diabetes.


Autoantigens/immunology , Cross Reactions/immunology , HLA-DQ Antigens/immunology , Islets of Langerhans/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Alleles , Amino Acid Sequence , Diabetes Mellitus, Type 1/etiology , Diabetes Mellitus, Type 1/metabolism , Epitopes/chemistry , Epitopes/immunology , HLA-DQ Antigens/chemistry , HLA-DQ Antigens/genetics , Humans , Models, Molecular , Protein Multimerization , Structure-Activity Relationship , T-Cell Antigen Receptor Specificity
10.
Cancer Immunol Res ; 7(10): 1727-1739, 2019 10.
Article En | MEDLINE | ID: mdl-31405946

Although CD4+ T cells likely play key roles in antitumor immune responses, most immuno-oncology studies have been limited to CD8+ T-cell responses due to multiple technical barriers and a lack of shared antigens across patients. Merkel cell carcinoma (MCC) is an aggressive skin cancer caused by Merkel cell polyomavirus (MCPyV) oncoproteins in 80% of cases. Because MCPyV oncoproteins are shared across most patients with MCC, it is unusually feasible to identify, characterize, and potentially augment tumor-specific CD4+ T cells. Here, we report the identification of CD4+ T-cell responses against six MCPyV epitopes, one of which included a conserved, essential viral oncogenic domain that binds/disables the cellular retinoblastoma (Rb) tumor suppressor. We found that this epitope (WEDLT209-228) could be presented by three population-prevalent HLA class II alleles, making it a relevant target in 64% of virus-positive MCC patients. Cellular staining with a WEDLT209-228-HLA-DRB1*0401 tetramer indicated that specific CD4+ T cells were detectable in 78% (14 of 18) of evaluable MCC patients, were 250-fold enriched within MCC tumors relative to peripheral blood, and had diverse T-cell receptor sequences. We also identified a modification of this domain that still allowed recognition by these CD4+ T cells but disabled binding to the Rb tumor suppressor, a key step in the detoxification of a possible therapeutic vaccine. The use of these new tools for deeper study of MCPyV-specific CD4+ T cells may provide broader insight into cancer-specific CD4+ T-cell responses.


CD4-Positive T-Lymphocytes/immunology , Carcinogenesis/immunology , Carcinoma, Merkel Cell/immunology , Epitopes/immunology , Merkel cell polyomavirus/immunology , Skin Neoplasms/immunology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Merkel Cell/drug therapy , Carcinoma, Merkel Cell/metabolism , Carcinoma, Merkel Cell/pathology , Cell Line, Tumor , Healthy Volunteers , Humans , Oligopeptides/immunology , Retinoblastoma Protein/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
11.
J Immunol ; 202(9): 2558-2569, 2019 05 01.
Article En | MEDLINE | ID: mdl-30926644

We have reported that the major histocompatibility molecule HLA-DQ2 (DQA1*05:01/DQB1*02:01) (DQ2) is relatively resistant to HLA-DM (DM), a peptide exchange catalyst for MHC class II. In this study, we analyzed the role of DQ2/DM interaction in the generation of DQ2-restricted gliadin epitopes, relevant to celiac disease, or DQ2-restricted viral epitopes, relevant to host defense. We used paired human APC, differing in DM expression (DMnull versus DMhigh) or differing by expression of wild-type DQ2, versus a DM-susceptible, DQ2 point mutant DQ2α+53G. The APC pairs were compared for their ability to stimulate human CD4+ T cell clones. Despite higher DQ2 levels, DMhigh APC attenuated T cell responses compared with DMnull APC after intracellular generation of four tested gliadin epitopes. DMhigh APC expressing the DQ2α+53G mutant further suppressed these gliadin-mediated responses. The gliadin epitopes were found to have moderate affinity for DQ2, and even lower affinity for the DQ2 mutant, consistent with DM suppression of their presentation. In contrast, DMhigh APC significantly promoted the presentation of DQ2-restricted epitopes derived intracellularly from inactivated HSV type 2, influenza hemagglutinin, and human papillomavirus E7 protein. When extracellular peptide epitopes were used as Ag, the DQ2 surface levels and peptide affinity were the major regulators of T cell responses. The differential effect of DM on stimulation of the two groups of T cell clones implies differences in DQ2 presentation pathways associated with nonpathogen- and pathogen-derived Ags in vivo.


Antigen Presentation , Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , Celiac Disease/immunology , Epitopes, T-Lymphocyte/immunology , Gliadin/immunology , HLA-DQ Antigens/immunology , Viral Proteins/immunology , Virus Diseases/immunology , Antigen-Presenting Cells/pathology , CD4-Positive T-Lymphocytes/pathology , Celiac Disease/pathology , Cell Line , Humans
12.
Cell Immunol ; 335: 68-75, 2019 01.
Article En | MEDLINE | ID: mdl-30428974

CD4+ T cell responses are thought to play a role in type 1 diabetes (T1D). However, detection and characterization of T cells that respond to beta cell epitopes in subjects with T1D has been limited by technical obstacles, including the inherently low frequencies in peripheral blood and variable responsiveness of individual subjects to single epitopes. We implemented a multicolor staining approach that allows direct ex vivo characterization of multiple CD4+ T cell specificities in a single sample. Here we demonstrate and apply that multicolor approach to directly measure the frequency and phenotype of beta cell specific CD4+ T cells in T1D patients and HLA matched controls. For this work we utilized five DR0401 restricted peptides from proinsulin, GAD65, IA-2, and IGRP, which were previously reported as disease relevant epitopes. Surprisingly, although responses to each of these peptides can be readily detected after in vitro expansion, our results indicated that only proinsulin specific T cells were consistently detectable at moderate frequencies in subjects with T1D. Characterization of beta cell specific CD4+ T cells revealed only modest differences between subjects with T1D and healthy controls. Subjects with T1D did have higher proportions of CD45RA negative epitope specific T cells than controls. In patients epitope specific T cells were often CXCR3 positive and a substantial proportion were CCR7 negative, suggesting a Th1-like effector phenotype. Finally, we demonstrated that our multicolor staining approach is compatible with class I multimer analysis, facilitating the characterization of self-reactive CD4+ and CD8+ T cells using a single sample.


CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Insulin-Secreting Cells/immunology , Adolescent , Adult , Aged , CD4-Positive T-Lymphocytes/metabolism , Epitopes , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunohistochemistry/methods , Insulin-Secreting Cells/metabolism , Male , Middle Aged , Proinsulin/immunology , Proinsulin/metabolism
13.
Diabetes ; 67(7): 1356-1368, 2018 07.
Article En | MEDLINE | ID: mdl-29654212

In spite of tolerance mechanisms, some individuals develop T-cell-mediated autoimmunity. Posttranslational modifications that increase the affinity of epitope presentation and/or recognition represent one means through which self-tolerance mechanisms can be circumvented. We investigated T-cell recognition of peptides that correspond to modified ß-cell antigens in subjects with type 1 diabetes. Modified peptides elicited enhanced proliferation by autoreactive T-cell clones. Endoplasmic reticulum (ER) stress in insulinoma cells increased cytosolic calcium and the activity of tissue transglutaminase 2 (tTG2). Furthermore, stressed human islets and insulinomas elicited effector responses from T cells specific for modified peptides, suggesting that ER stress-derived tTG2 activity generated deamidated neoepitopes that autoreactive T cells recognized. Patients with type 1 diabetes had large numbers of T cells specific for these epitopes in their peripheral blood. T cells with these specificities were also isolated from the pancreatic draining lymph nodes of cadaveric donors with established diabetes. Together, these results suggest that self-antigens are enzymatically modified in ß-cells during ER stress, giving rise to modified epitopes that could serve to initiate autoimmunity or to further broaden the antigenic repertoire, activating potentially pathogenic CD4+ T cells that may not be effectively eliminated by negative selection.


CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Endoplasmic Reticulum Stress/physiology , Epitopes, T-Lymphocyte/metabolism , Insulin-Secreting Cells/metabolism , Protein Processing, Post-Translational , Animals , Antigen Presentation , Autoantigens/immunology , Autoimmunity/immunology , Case-Control Studies , Cells, Cultured , Diabetes Mellitus, Type 1/metabolism , Enzyme Activation , Epitopes, T-Lymphocyte/immunology , GTP-Binding Proteins/metabolism , Humans , Insecta , Insulin-Secreting Cells/immunology , Protein Glutamine gamma Glutamyltransferase 2 , Protein Processing, Post-Translational/physiology , Protein-Arginine Deiminase Type 2 , Protein-Arginine Deiminases/metabolism , Transglutaminases/metabolism
14.
J Clin Invest ; 128(4): 1563-1568, 2018 04 02.
Article En | MEDLINE | ID: mdl-29360643

T cells specific for neoantigens encoded by mutated genes in cancers are increasingly recognized as mediators of tumor destruction after immune checkpoint inhibitor therapy or adoptive cell transfer. Unfortunately, most neoantigens result from random mutations and are patient specific, and some cancers contain few mutations to serve as potential antigens. We describe a patient with stage IV acral melanoma who achieved a complete response following adoptive transfer of tumor-infiltrating lymphocytes (TILs). Tumor exome sequencing surprisingly revealed fewer than 30 nonsynonymous somatic mutations, including oncogenic BRAFV600E. Analysis of the specificity of TILs identified rare CD4+ T cells specific for BRAFV600E and diverse CD8+ T cells reactive to nonmutated self-antigens. These specificities increased in blood after TIL transfer and persisted long-term, suggesting they contributed to the effective antitumor immune response. Gene transfer of the BRAFV600E-specific T cell receptor (TCR) conferred recognition of class II MHC-positive cells expressing the BRAF mutation. Therapy with TCR-engineered BRAFV600E-specific CD4+ T cells may have direct antitumor effects and augment CD8+ T cell responses to self- and/or mutated tumor antigens in patients with BRAF-mutated cancers.


Antigens, Neoplasm , CD4-Positive T-Lymphocytes , Immunotherapy, Adoptive , Melanoma , Mutation, Missense , Proto-Oncogene Proteins B-raf , Receptors, Chimeric Antigen/immunology , Amino Acid Substitution , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Humans , Male , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Middle Aged , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/immunology , Receptors, Chimeric Antigen/genetics
15.
Nat Commun ; 7: 12614, 2016 08 30.
Article En | MEDLINE | ID: mdl-27571776

MHC tetramers are an essential tool for characterizing antigen-specific CD4+ T cells. However, their ex vivo analysis is limited by the large sample requirements. Here we demonstrate a combinatorial staining approach that allows simultaneous characterization of multiple specificities to address this challenge. As proof of principle, we analyse CD4+ T-cell responses to the seasonal influenza vaccine, establishing a frequency hierarchy and examining differences in memory and activation status, lineage commitment and cytokine expression. We also observe cross-reactivity between an established epitope and recent variant and provide a means for probing T-cell receptor cross-reactivity. Using cord blood samples, we correlate the adult frequency hierarchy with the naive precursor frequencies. Last, we use our combinatorial staining approach to demonstrate that rheumatoid arthritis patients on therapy can mount effective responses to influenza vaccination. Together, these results demonstrate the utility of combinatorial tetramer staining and suggest that this approach may have broad applicability in human health and disease.


CD4-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , HLA-DRB1 Chains/immunology , Lymphocyte Activation/immunology , Staining and Labeling/methods , Adult , Aged , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Cross Reactions , Female , Fetal Blood , HLA-DRB1 Chains/metabolism , Humans , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Male , Middle Aged , Protein Multimerization , Receptors, Antigen, T-Cell/immunology
16.
PLoS One ; 9(11): e112882, 2014.
Article En | MEDLINE | ID: mdl-25405480

Susceptibility to type 1 diabetes (T1D) is strongly associated with MHC class II molecules, particularly HLA-DQ8 (DQ8: DQA1*03:01/DQB1*03:02). Monitoring T1D-specific T cell responses to DQ8-restricted epitopes may be key to understanding the immunopathology of the disease. In this study, we examined DQ8-restricted T cell responses to glutamic acid decarboxylase 65 (GAD65) using DQ8 tetramers. We demonstrated that GAD65 121-140 and GAD65 250-266 elicited responses from DQ8+ subjects. Circulating CD4+ T cells specific for these epitopes were detected significantly more often in T1D patients than in healthy individuals after in vitro expansion. T cell clones specific for GAD65 121-140 and GAD65 250-266 carried a Th1-dominant phenotype, with some of the GAD65 121-140-specific T cell clones producing IL-17. GAD65 250-266-specific CD4+ T cells could also be detected by direct ex vivo staining. Analysis of unmanipulated peripheral blood mononuclear cells (PBMCs) revealed that GAD65 250-266-specific T cells could be found in both healthy and diabetic individuals but the frequencies of specific T cells were higher in subjects with type 1 diabetes. Taken together, our results suggest a proinflammatory role for T cells specific for DQ8-restricted GAD65 121-140 and GAD65 250-266 epitopes and implicate their possible contribution to the progression of T1D.


CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/physiopathology , Glutamate Decarboxylase/adverse effects , HLA-DQ Antigens/genetics , Diabetes Mellitus, Type 1/immunology , Glutamate Decarboxylase/metabolism , Humans , Statistics, Nonparametric , Washington
17.
Proc Natl Acad Sci U S A ; 111(41): 14840-5, 2014 Oct 14.
Article En | MEDLINE | ID: mdl-25267644

Previous studies in type 1 diabetes (T1D) in the nonobese diabetic mouse demonstrated that a crucial insulin epitope (B:9-23) is presented to diabetogenic CD4 T cells by IA(g7) in a weakly bound register. The importance of antigenic peptides with low-affinity HLA binding in human autoimmune disease remains less clear. The objective of this study was to investigate T-cell responses to a low-affinity self-epitope in subjects with T1D. HLA-DQ8 tetramers loaded with a modified insulin peptide designed to improve binding the low-affinity register were used to visualize T-cell responses following in vitro stimulation. Positive responses were only detectable in T1D patients. Because the immunogenic register of B:9-23 presented by DQ8 has not been conclusively demonstrated, T-cell assays using substituted peptides and DQ8 constructs engineered to express and present B:9-23 in fixed binding registers were used to determine the immunogenic register of this peptide. Tetramer-positive T-cell clones isolated from T1D subjects that responded to stimulation by B:11-23 peptide and denatured insulin protein were conclusively shown to recognize B:11-23 bound to HLA-DQ8 in the low-affinity register 3. These T cells also responded to homologous peptides derived from microbial antigens, suggesting that their initial priming could occur via molecular mimicry. These results are in accord with prior observations from the nonobese diabetic mouse model, suggesting a mechanism shared by mouse and man through which T cells that recognize a weakly bound peptide can circumvent tolerance mechanisms and play a role in the initiation of autoimmune diseases, such as T1D.


CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Insulin/immunology , Peptides/immunology , Amino Acid Sequence , Animals , Case-Control Studies , Cell Proliferation , Cell Separation , Clone Cells , HLA-DQ Antigens , Humans , Insulin/chemistry , Lymphocyte Activation/immunology , Mice , Molecular Sequence Data , Peptides/chemistry
18.
Diabetes ; 63(9): 3033-40, 2014 Sep.
Article En | MEDLINE | ID: mdl-24705406

Posttranslational modification (PTM) of self-proteins has been shown to elicit clinically relevant immune responses in rheumatoid arthritis and celiac disease. Accumulating evidence suggests that recognition of modified self-proteins may also be important in type 1 diabetes. Our objective was to identify posttranslationally modified GAD65 peptides, which are recognized by subjects with type 1 diabetes, and to assess their disease relevance. We show that citrullination and transglutamination of peptides can enhance their binding to DRB1*04:01, a diabetes-susceptible HLA allele. These and corresponding modifications to amino acids at T-cell contact positions modulated the recognition of multiple GAD65 peptides by self-reactive T cells. Using class II tetramers, we verified that memory T cells specific for these modified epitopes were detectable directly ex vivo in the peripheral blood of subjects with type 1 diabetes at significantly higher frequencies than healthy controls. Furthermore, T cells that recognize these modified epitopes were either less responsive or nonresponsive to their unmodified counterparts. Our findings suggest that PTM contributes to the progression of autoimmune diabetes by eliciting T-cell responses to new epitope specificities that are present primarily in the periphery, thereby circumventing tolerance mechanisms.


Diabetes Mellitus, Type 1/immunology , Epitopes, T-Lymphocyte/immunology , Glutamate Decarboxylase/immunology , Adult , Amino Acid Sequence , CD4-Positive T-Lymphocytes/immunology , Glutamate Decarboxylase/metabolism , HLA-DRB1 Chains/immunology , Humans , Insulin-Secreting Cells/immunology , Protein Processing, Post-Translational
19.
J Immunol ; 190(9): 4516-24, 2013 May 01.
Article En | MEDLINE | ID: mdl-23543758

DRB1*08:01 (DR0801) and DRB1*11:01 (DR1101) are highly homologous alleles that have opposing effects on susceptibility to primary biliary cirrhosis (PBC). DR0801 confers risk and shares a key feature with other HLA class II alleles that predispose to autoimmunity: a nonaspartic acid at beta57. DR1101 is associated with protection from PBC, and its sequence includes an aspartic acid at beta57. To elucidate a mechanism for the opposing effects of these HLA alleles on PBC susceptibility, we compared the features of epitopes presented by DR0801 and DR1101. First, we identified DR0801- and DR1101-restricted epitopes within multiple viral Ags, observing both shared and distinct epitopes. Because DR0801 is not well characterized, we deduced its motif by measuring binding affinities for a library of peptides, confirming its key features through structural modeling. DR0801 was distinct from DR1101 in its ability to accommodate charged residues within all but one of its binding pockets. In particular, DR0801 strongly preferred acidic residues in pocket 9. These findings were used to identify potentially antigenic sequences within PDC-E2 (an important hepatic autoantigen) that contain a DR0801 motif. Four peptides bound to DR0801 with reasonable affinity, but only one of these bound to DR1101. Three peptides, PDC-E2145-159, PDC-E2(249-263), and PDC-E2(629-643), elicited high-affinity T cell responses in DR0801 subjects, implicating these as likely autoreactive specificities. Therefore, the unique molecular features of DR0801 may lead to the selection of a distinct T cell repertoire that contributes to breakdown of self-tolerance in primary biliary cirrhosis, whereas those of DR1101 promote tolerance.


Dihydrolipoyllysine-Residue Acetyltransferase/immunology , Epitopes, T-Lymphocyte/immunology , HLA-DRB1 Chains/immunology , Alleles , Antigens, Viral/immunology , Antigens, Viral/metabolism , Autoimmunity/immunology , Dihydrolipoyllysine-Residue Acetyltransferase/metabolism , Epitope Mapping/methods , Epitopes, T-Lymphocyte/metabolism , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/metabolism , Humans , Liver Cirrhosis, Biliary/immunology , Liver Cirrhosis, Biliary/metabolism , Protein Binding , Protein Structure, Tertiary , Self Tolerance/immunology , Structure-Activity Relationship , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
20.
Mol Immunol ; 50(1-2): 26-34, 2012 Feb.
Article En | MEDLINE | ID: mdl-22196942

This study characterized the unique peptide-binding characteristics of HLA-DRB1*12:01 (DR1201), an allele studied in the context of various autoimmune diseases, using a peptide competition assay and structural modeling. After defining Influenza A/Puerto Rico/8/34 Matrix Protein M1 (H1MP) 40-54 as a DR1201 restricted epitope, the critical anchor residues within this sequence were confirmed by measuring the relative binding of peptides with non-conservative substitutions in competition with biotin labeled H1MP(40-54) peptide. Based on this information, a set of peptides was designed with single amino acid substitutions at these anchor positions. The overall peptide binding preferences for the DR1201 allele were deduced by incubating these peptides in competition with the reference H1MP(40-54) to determine the relative binding affinities of each to recombinant DR1201 protein. As expected, pocket 1 preferred methionine and aliphatic residues, and tolerated phenylalanine. Pocket 4 was mostly composed of hydrophobic residues, thereby preferentially accommodating aliphatic residues, but could also weakly accommodate lysine due to its slightly acidic environment. Pocket 6 accepted a wide range of amino acids because of the diverse residues that comprise this pocket. Pocket 9 accepted aliphatic and negatively charged amino acids, but showed a remarkable preference for aromatic residues due to the conformation of the pocket, which lacks the typical salt bridge between ß57Asp and α76Arg. These binding characteristics contrast with the closely related DR1104 allele, distinguishing DR1201 among the alleles of the HLA-DR5 group. These empirical results were used to develop an algorithm to predict peptide binding to DR1201. This algorithm was used to verify T cell epitopes within novel antigenic peptides identified by tetramer staining and within peptides from published reports that contain putative DR1201 epitopes.


Amino Acids/immunology , CD4-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , HLA-DRB1 Chains/immunology , Amino Acid Motifs/genetics , Amino Acid Motifs/immunology , Amino Acid Sequence , Amino Acid Substitution , Amino Acids/genetics , Amino Acids/metabolism , Binding Sites/genetics , Binding, Competitive , CD4-Positive T-Lymphocytes/metabolism , Epitope Mapping , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/metabolism , HLA-DRB1 Chains/chemistry , HLA-DRB1 Chains/metabolism , Humans , Influenza A virus/immunology , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , Viral Matrix Proteins/immunology
...