Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
PLoS Biol ; 22(4): e3002559, 2024 Apr.
Article En | MEDLINE | ID: mdl-38652714

Increasing evidence indicates that terminally differentiated neurons in the brain may recommit to a cell cycle-like process during neuronal aging and under disease conditions. Because of the rare existence and random localization of these cells in the brain, their molecular profiles and disease-specific heterogeneities remain unclear. Through a bioinformatics approach that allows integrated analyses of multiple single-nucleus transcriptome datasets from human brain samples, these rare cell populations were identified and selected for further characterization. Our analyses indicated that these cell cycle-related events occur predominantly in excitatory neurons and that cellular senescence is likely their immediate terminal fate. Quantitatively, the number of cell cycle re-engaging and senescent neurons decreased during the normal brain aging process, but in the context of late-onset Alzheimer's disease (AD), these cells accumulate instead. Transcriptomic profiling of these cells suggested that disease-specific differences were predominantly tied to the early stage of the senescence process, revealing that these cells presented more proinflammatory, metabolically deregulated, and pathology-associated signatures in disease-affected brains. Similarly, these general features of cell cycle re-engaging neurons were also observed in a subpopulation of dopaminergic neurons identified in the Parkinson's disease (PD)-Lewy body dementia (LBD) model. An extended analysis conducted in a mouse model of brain aging further validated the ability of this bioinformatics approach to determine the robust relationship between the cell cycle and senescence processes in neurons in this cross-species setting.


Aging , Alzheimer Disease , Brain , Cell Cycle , Cellular Senescence , Neurons , Animals , Humans , Cellular Senescence/genetics , Brain/metabolism , Brain/pathology , Aging/physiology , Aging/genetics , Cell Cycle/genetics , Mice , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Neurons/metabolism , Neurons/pathology , Transcriptome/genetics , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease/metabolism , Gene Expression Profiling , Male , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Mice, Inbred C57BL , Aged
2.
J Neuroinflammation ; 21(1): 1, 2024 Jan 04.
Article En | MEDLINE | ID: mdl-38178204

BACKGROUND: Late-onset Alzheimer's disease (LOAD) is the most common form of dementia; it disproportionally affects women in terms of both incidence rates and severity of progression. The cellular and molecular mechanisms underlying this clinical phenomenon remain elusive and ill-defined. METHODS: In-depth analyses were performed with multiple human LOAD single-nucleus transcriptome datasets to thoroughly characterize cell populations in the cerebral cortex. ROSMAP bulk human brain tissue transcriptome and DNA methylome datasets were also included for validation. Detailed assessments of microglial cell subpopulations and their relevance to sex-biased changes at the tissue level were performed. Clinical trait associations, cell evolutionary trajectories, and transcription regulon analyses were conducted. RESULTS: The relative numbers of functionally defective microglia were aberrantly increased uniquely among affected females. Substratification of the microglia into different subtypes according to their transcriptomic signatures identified a group of female-enriched and disease-associated microglia (FDAMic), the numbers of which were positively associated with disease severity. Phenotypically, these cells exhibit transcriptomic signatures that support active proliferation, MHC class II autoantigen presentation and amyloid-ß binding, but they are also likely defective in phagocytosis. FDAMic are likely evolved from female activated response microglia (ARMic) with an APOE4 background and compromised estrogen receptor (ER) signaling that is deemed to be active among most subtypes of microglia. CONCLUSION: This study offered important insights at both the cellular and molecular levels into how ER signaling affects microglial heterogeneity and function. FDAMic are associated with more advanced pathologies and severe trends of cognitive decline. Their emergence could, at least in part, explain the phenomenon of greater penetrance of the APOE4 genotype found in females. The biases of FDAMic emergence toward female sex and APOE4 status may also explain why hormone replacement therapy is more effective in APOE4 carriers. The pathologic nature of FDAMic suggests that selective modulations of these cells may help to regain brain neuroimmune homeostasis, serving as a new target for future drug development.


Alzheimer Disease , Humans , Female , Alzheimer Disease/pathology , Microglia/metabolism , Sex Characteristics , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Brain/metabolism
3.
J Neurochem ; 166(4): 654-677, 2023 08.
Article En | MEDLINE | ID: mdl-37319113

Cerebellar ataxia is often the first and irreversible outcome in the disease of ataxia-telangiectasia (A-T), as a consequence of selective cerebellar Purkinje neuronal degeneration. A-T is an autosomal recessive disorder resulting from the loss-of-function mutations of the ataxia-telangiectasia-mutated ATM gene. Over years of research, it now becomes clear that functional ATM-a serine/threonine kinase protein product of the ATM gene-plays critical roles in regulating both cellular DNA damage response and central carbon metabolic network in multiple subcellular locations. The key question arises is how cerebellar Purkinje neurons become selectively vulnerable when all other cell types in the brain are suffering from the very same defects in ATM function. This review intended to comprehensively elaborate the unexpected linkages between these two seemingly independent cellular functions and the regulatory roles of ATM involved, their integrated impacts on both physical and functional properties, hence the introduction of selective vulnerability to Purkinje neurons in the disease will be addressed.


Ataxia Telangiectasia , Humans , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/metabolism , Purkinje Cells/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , DNA Damage/genetics , Cell Cycle Proteins/genetics
4.
Aging Cell ; 22(5): e13810, 2023 05.
Article En | MEDLINE | ID: mdl-36883688

The immune system plays a central role in many processes of age-related disorders and it remains unclear if the innate immune system may play roles in shaping extreme longevity. By an integrated analysis with multiple bulk and single cell transcriptomic, so as DNA methylomic datasets of white blood cells, a previously unappreciated yet commonly activated status of the innate monocyte phagocytic activities is identified. Detailed analyses revealed that the life cycle of these monocytes is enhanced and primed to a M2-like macrophage phenotype. Functional characterization unexpectedly revealed an insulin-driven immunometabolic network which supports multiple aspects of phagocytosis. Such reprogramming is associated to a skewed trend of DNA demethylation at the promoter regions of multiple phagocytic genes, so as a direct transcriptional effect induced by nuclear-localized insulin receptor. Together, these highlighted that preservation of insulin sensitivity is a key to healthy lifespan and extended longevity, via boosting the function of innate immune system in advanced ages.


Insulin Resistance , Longevity , Humans , Longevity/genetics , Insulin/metabolism , Monocytes/metabolism , Macrophages/metabolism
5.
J Alzheimers Dis ; 94(s1): S429-S451, 2023.
Article En | MEDLINE | ID: mdl-35848025

Chronological aging is by far the strongest risk factor for age-related dementia and Alzheimer's disease. Senescent cells accumulated in the aging and Alzheimer's disease brains are now recognized as the keys to describing such an association. Cellular senescence is a classic phenomenon characterized by stable cell arrest, which is thought to be applicable only to dividing cells. Emerging evidence indicates that fully differentiated post-mitotic neurons are also capable of becoming senescent, with roles in contributing to both brain aging and disease pathogenesis. The key question that arises is the identity of the upstream triggers and the molecular mechanisms that underly such changes. Here, we highlight the potential role of persistent DNA damage response as the major driver of senescent phenotypes and discuss the current evidence and molecular mechanisms that connect DNA repair infidelity, cell cycle re-entry and terminal fate decision in committing neuronal cell senescence.


Alzheimer Disease , Humans , Alzheimer Disease/pathology , Cell Cycle/physiology , Cellular Senescence/physiology , Neurons/metabolism , Brain , DNA Damage
7.
Am J Transl Res ; 3(5): 479-91, 2011.
Article En | MEDLINE | ID: mdl-22046489

The gold (III) porphyrin complex, gold-2a, elicits anti-tumor activity by targeting the Wnt/ß-catenin signaling pathway [Chow KH et al, Cancer Research 2010;70(1):329-37]. Here, the molecular mechanisms underlying the inhibitory effects of this compound on WNT1 gene expression were elucidated further. A response element to gold-2a was identified located within the -1290 to -1112 nt region of the WNT1 promoter, containing a binding site for the transcription regulator Yin Yang 1 (YY1). Gold-2a promoted the association of YY1 and suppressor of zeste 12 (Suz12; a component of the polycomb repressor complex 2) with the WNT1 promoter. Under normal culture conditions, the intracellular translocalization of YY1 was synchronized with cell cycle progression and WNT1 expression. Gold-2a promoted the nuclear accumulation and abolished the nuclear exportation of YY1, resulting in a persistent inhibition of WNT1 expression and a cell cycle arrest at G1/S phase. A dimorphic role of YY1 in regulating cell proliferation and division was revealed. Thus, the present study extends the understanding of the anti-tumor mechanism of gold-2a to the epigenetic level, which involves the modulation of the dynamic interactions between YY1 and a specific region of the WNT1 promoter.

8.
Cancer Res ; 70(1): 329-37, 2010 Jan 01.
Article En | MEDLINE | ID: mdl-19996284

Gold(III) complexes have shown promise as antitumor agents, but their clinical usefulness has been limited by their poor stability under physiological conditions. A novel gold(III) porphyrin complex [5-hydroxyphenyl-10,15,20-triphenylporphyrinato gold(III) chloride (gold-2a)] with improved aqueous stability showed 100-fold to 3,000-fold higher cytotoxicity than platinum-based cisplatin and IC50 values in the nanomolar range in a panel of human breast cancer cell lines. Intraductal injections of gold-2a significantly suppressed mammary tumor growth in nude mice. These effects are attributed, in part, to attenuation of Wnt/beta-catenin signaling through inhibition of class I histone deacetylase (HDAC) activity. These data, in combination with computer modeling, suggest that gold-2a may represent a promising class of anticancer HDAC inhibitor preferentially targeting tumor cells with aberrant Wnt/beta-catenin signaling.


Antineoplastic Agents/pharmacology , Gold Compounds/pharmacology , Mammary Neoplasms, Experimental/drug therapy , Metalloporphyrins/pharmacology , Signal Transduction/drug effects , Animals , Cell Line, Tumor , Female , Histone Deacetylase Inhibitors/pharmacology , Humans , Immunoprecipitation , Inhibitory Concentration 50 , Mass Spectrometry , Mice , Mice, Nude , Reverse Transcriptase Polymerase Chain Reaction , Wnt Proteins/drug effects , Xenograft Model Antitumor Assays , beta Catenin/drug effects
...