Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 51
1.
Microbiol Spectr ; : e0354023, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842332

Candida auris, initially identified in 2009, has rapidly become a critical concern due to its antifungal resistance and significant mortality rates in healthcare-associated outbreaks. To date, whole-genome sequencing (WGS) has identified five unique clades of C. auris, with some strains displaying resistance to all primary antifungal drug classes. In this study, we presented the first WGS analysis of C. auris from Bangladesh, describing its origins, transmission dynamics, and antifungal susceptibility testing (AFST) profile. Ten C. auris isolates collected from hospital settings in Bangladesh were initially identified by CHROMagar Candida Plus, followed by VITEK2 system, and later sequenced using Illumina NextSeq 550 system. Reference-based phylogenetic analysis and variant calling pipelines were used to classify the isolates in different clades. All isolates aligned ~90% with the Clade I C. auris B11205 reference genome. Of the 10 isolates, 8 were clustered with Clade I isolates, highlighting a South Asian lineage prevalent in Bangladesh. Remarkably, the remaining two isolates formed a distinct cluster, exhibiting >42,447 single-nucleotide polymorphism differences compared to their closest Clade IV counterparts. This significant variation corroborates the emergence of a sixth clade (Clade VI) of C. auris in Bangladesh, with potential for international transmission. AFST results showed that 80% of the C. auris isolates were resistant to fluconazole and voriconazole, whereas Clade VI isolates were susceptible to azoles, echinocandins, and pyrimidine analogue. Genomic sequencing revealed ERG11_Y132F mutation conferring azole resistance while FCY1_S70R mutation found inconsequential in describing 5-flucytosine resistance. Our study underscores the pressing need for comprehensive genomic surveillance in Bangladesh to better understand the emergence, transmission dynamics, and resistance profiles of C. auris infections. Unveiling the discovery of a sixth clade (Clade VI) accentuates the indispensable role of advanced sequencing methodologies.IMPORTANCECandida auris is a nosocomial fungal pathogen that is commonly misidentified as other Candida species. Since its emergence in 2009, this multidrug-resistant fungus has become one of the five urgent antimicrobial threats by 2019. Whole-genome sequencing (WGS) has proven to be the most accurate identification technique of C. auris which also played a crucial role in the initial discovery of this pathogen. WGS analysis of C. auris has revealed five distinct clades where isolates of each clade differ among themselves based on pathogenicity, colonization, infection mechanism, as well as other phenotypic characteristics. In Bangladesh, C. auris was first reported in 2019 from clinical samples of a large hospital in Dhaka city. To understand the origin, transmission dynamics, and antifungal-resistance profile of C. auris isolates circulating in Bangladesh, we conducted a WGS-based surveillance study on two of the largest hospital settings in Dhaka, Bangladesh.

2.
Open Forum Infect Dis ; 11(6): ofae264, 2024 Jun.
Article En | MEDLINE | ID: mdl-38835496

Background: Reports of fluconazole-resistant Candida parapsilosis bloodstream infections are increasing. We describe a cluster of fluconazole-resistant C parapsilosis bloodstream infections identified in 2021 on routine surveillance by the Georgia Emerging Infections Program in conjunction with the Centers for Disease Control and Prevention. Methods: Whole-genome sequencing was used to analyze C parapsilosis bloodstream infections isolates. Epidemiological data were obtained from medical records. A social network analysis was conducted using Georgia Hospital Discharge Data. Results: Twenty fluconazole-resistant isolates were identified in 2021, representing the largest proportion (34%) of fluconazole-resistant C parapsilosis bloodstream infections identified in Georgia since surveillance began in 2008. All resistant isolates were closely genetically related and contained the Y132F mutation in the ERG11 gene. Patients with fluconazole-resistant isolates were more likely to have resided at long-term acute care hospitals compared with patients with susceptible isolates (P = .01). There was a trend toward increased mechanical ventilation and prior azole use in patients with fluconazole-resistant isolates. Social network analysis revealed that patients with fluconazole-resistant isolates interfaced with a distinct set of healthcare facilities centered around 2 long-term acute care hospitals compared with patients with susceptible isolates. Conclusions: Whole-genome sequencing results showing that fluconazole-resistant C parapsilosis isolates from Georgia surveillance demonstrated low genetic diversity compared with susceptible isolates and their association with a facility network centered around 2 long-term acute care hospitals suggests clonal spread of fluconazole-resistant C parapsilosis. Further studies are needed to better understand the sudden emergence and transmission of fluconazole-resistant C parapsilosis.

3.
Lancet Microbe ; 5(3): e282-e290, 2024 03.
Article En | MEDLINE | ID: mdl-38432234

BACKGROUND: Zoonotic sporotrichosis is a neglected fungal disease, whereby outbreaks are primarily driven by Sporothrix brasiliensis and linked to cat-to-human transmission. To understand the emergence and spread of sporotrichosis in Brazil, the epicentre of the current epidemic in South America, we aimed to conduct whole-genome sequencing (WGS) to describe the genomic epidemiology. METHODS: In this genomic epidemiology study, we included Sporothrix spp isolates from sporotrichosis cases from Brazil, Colombia, and the USA. We conducted WGS using Illumina NovaSeq on isolates collected by three laboratories in Brazil from humans and cats with sporotrichosis between 2013 and 2022. All isolates that were confirmed to be Sporothrix genus by internal transcribed spacer or beta-tubulin PCR sequencing were included in this study. We downloaded eight Sporothrix genome sequences from the National Center for Biotechnology Information (six from Brazil, two from Colombia). Three Sporothrix spp genome sequences from the USA were generated by the US Centers for Disease Control and Prevention as part of this study. We did phylogenetic analyses and correlated geographical and temporal case distribution with genotypic features of Sporothrix spp isolates. FINDINGS: 72 Sporothrix spp isolates from 55 human and 17 animal sporotrichosis cases were included: 67 (93%) were from Brazil, two (3%) from Colombia, and three (4%) from the USA. Cases spanned from 1999 to 2022. Most (61 [85%]) isolates were S brasiliensis, and all were reported from Brazil. Ten (14%) were Sporothrix schenckii and were reported from Brazil, USA, and Colombia. For S schenckii isolates, two distinct clades were observed wherein isolates clustered by geography. For S brasiliensis isolates, five clades separated by more than 100 000 single-nucleotide polymorphisms were observed. Among the five S brasiliensis clades, clades A and C contained isolates from both human and cat cases, and clade A contained isolates from six different states in Brazil. Compared with S brasiliensis isolates, larger genetic diversity was observed among S schenckii isolates from animal and human cases within a clade. INTERPRETATION: Our results suggest that the ongoing epidemic driven by S brasiliensis in Brazil represents several, independent emergence events followed by animal-to-animal and animal-to human transmission within and between Brazilian states. These results describe how S brasiliensis can emerge and spread within a country. FUNDING: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil; the São Paulo Research Foundation; Productivity in Research fellowships by the National Council for Scientific and Technological Development, and Ministry of Science and Technology of Brazil.


Sporothrix , Sporotrichosis , Animals , Humans , Sporotrichosis/epidemiology , Sporotrichosis/veterinary , Sporotrichosis/microbiology , Brazil/epidemiology , Phylogeny , Disease Outbreaks , Genomics , Sporothrix/genetics
4.
mSphere ; 9(2): e0057723, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38299868

Since 2016, in Colombia, ongoing transmission of Candida auris has been reported in multiple cities. Here, we provide an updated description of C. auris genomic epidemiology and the dynamics of antifungal resistance in Colombia. We sequenced 99 isolates from C. auris cases with collection dates ranging from June 2016 to January 2021; the resulting sequences coupled with 103 previously generated sequences from C. auris cases were described in a phylogenetic analysis. All C. auris cases were clade IV. Of the 182 isolates with antifungal susceptibility data, 67 (37%) were resistant to fluconazole, and 39 (21%) were resistant to amphotericin B. Isolates predominately clustered by country except for 16 isolates from Bogotá, Colombia, which grouped with isolates from Venezuela. The largest cluster (N = 166 isolates) contained two subgroups. The first subgroup contained 26 isolates, mainly from César; of these, 85% (N = 22) were resistant to fluconazole. The second subgroup consisted of 47 isolates from the north coast; of these, 81% (N = 38) were resistant to amphotericin B. Mutations in the ERG11 and TAC1B genes were identified in fluconazole-resistant isolates. This work describes molecular mechanisms associated with C. auris antifungal resistance in Colombia. Overall, C. auris cases from different geographic locations in Colombia exhibited high genetic relatedness, suggesting continued transmission between cities since 2016. These findings also suggest a lack of or minimal introductions of different clades of C. auris into Colombia. IMPORTANCE: Candida auris is an emerging fungus that presents a serious global health threat and has caused multiple outbreaks in Colombia. This work discusses the likelihood of introductions and local transmission of C. auris and provides an updated description of the molecular mechanisms associated with antifungal resistance in Colombia. Efforts like this provide information about the evolving C. auris burden that could help guide public health strategies to control C. auris spread.


Antifungal Agents , Candidiasis , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Amphotericin B , Candida auris , Fluconazole , Colombia/epidemiology , Candida/genetics , Candidiasis/microbiology , Phylogeny , Genomics
5.
PLoS One ; 19(1): e0291406, 2024.
Article En | MEDLINE | ID: mdl-38241320

Candida auris is a newly emerged multidrug-resistant fungus capable of causing invasive infections with high mortality. Despite intense efforts to understand how this pathogen rapidly emerged and spread worldwide, its environmental reservoirs are poorly understood. Here, we present a collaborative effort between the U.S. Centers for Disease Control and Prevention, the National Center for Biotechnology Information, and GridRepublic (a volunteer computing platform) to identify C. auris sequences in publicly available metagenomic datasets. We developed the MetaNISH pipeline that uses SRPRISM to align sequences to a set of reference genomes and computes a score for each reference genome. We used MetaNISH to scan ~300,000 SRA metagenomic runs from 2010 onwards and identified five datasets containing C. auris reads. Finally, GridRepublic has implemented a prospective C. auris molecular monitoring system using MetaNISH and volunteer computing.


Candida , Candidiasis , Humans , Candida/genetics , Candidiasis/microbiology , Candida auris , Prospective Studies , Metagenomics , Antifungal Agents/therapeutic use
6.
Biomedica ; 43(Sp. 1): 278-287, 2023 08 31.
Article En, Es | MEDLINE | ID: mdl-37721898

Candida auris has been recognized as an emerging multidrug-resistant pathogen with a significant public health burden, causing cases of invasive infection and colonization due to its persistence on inanimate surfaces, ability to colonize skin of some patients, and high transmissibility in healthcare settings. The first sporadic report of the isolation of this species from the ear canal of a patient in Asia was in 2009 and reports from other regions of the world soon followed. However, it was not until 2015 that global epidemiological alerts were communicated as a result of an increasing number of reports of invasive infections caused by C. auris in several countries. Colombia was soon added to this list in 2016 after an unusual increase in the number of C. haemulonii isolates was reported, later confirmed as C. auris. Since the issuing of a national alert by the Colombian National Institute of Health together with the Ministry of Health in 2016, the number of cases reported reached over 2,000 by 2022. Colombian isolates have not shown pan resistance to available antifungals, unlike C. auris strains reported in other regions of the world, which leaves patients in Colombia with therapeutic options for these infections. However, increasing fluconazole resistance is being observed. Whole-genome sequencing of Colombian C. auris isolates has enhanced molecular epidemiological data, grouping Colombian isolates in clade IV together with other South American isolates.


Candida auris ha sido reconocido como un agente patógeno multirresistente emergente con una carga significativa en la salud pública. Genera casos de infección invasiva y colonización debido a su persistencia en superficies inanimadas, su capacidad para colonizar fácilmente la piel de algunos pacientes y su alta transmisibilidad en el ambiente hospitalario. El primer reporte esporádico de esta especie fue en Asia en el 2009 cuando se realizó su aislamiento a partir del conducto auditivo de un paciente, y pronto le siguieron reportes en otras regiones del mundo. Sin embargo, no fue hasta 2015 que se conocieron las alertas epidemiológicas a nivel mundial debido a un aumento en el número de casos de infecciones causadas por C. auris en varios países. Colombia se sumó a la lista en 2016 luego de un aumento inusual en el número de aislamientos de C. haemulonii informados, que luego se confirmaron como C. auris. Desde que el Instituto Nacional de Salud junto con el Ministerio de Salud emitieron la Alerta Nacional en el 2016, el número de casos reportados superó los 2.000 en el 2022. Los aislamientos colombianos no han mostrado resistencia generalizada a los antifúngicos disponibles, contrario a lo reportado para cepas de C. auris en algunas regiones del mundo, por lo que los pacientes en Colombia aún cuentan con opciones terapéuticas para estas infecciones. No obstante, se ha observado un aumento en la resistencia al fluconazol.


Candida auris , Skin , Colombia , Asia
7.
J Fungi (Basel) ; 9(9)2023 Aug 29.
Article En | MEDLINE | ID: mdl-37754992

Histoplasmosis is one of the most under-diagnosed and under-reported endemic mycoses in the United States. Histoplasma capsulatum is the causative agent of this disease. To date, molecular epidemiologic studies detailing the phylogeographic structure of H. capsulatum in the United States have been limited. We conducted genomic sequencing using isolates from histoplasmosis cases reported in the United States. We identified North American Clade 2 (NAm2) as the most prevalent clade in the country. Despite high intra-clade diversity, isolates from Minnesota and Michigan cases were predominately clustered by state. Future work incorporating environmental sampling and veterinary surveillance may further elucidate the molecular epidemiology of H. capsulatum in the United States and how genomic sequencing can be applied to the surveillance and outbreak investigation of histoplasmosis.

8.
J Fungi (Basel) ; 9(8)2023 Aug 03.
Article En | MEDLINE | ID: mdl-37623591

Fungal infections can cause severe disease and death and impose a substantial economic burden on healthcare systems. Public health research requires a multidisciplinary approach and is essential to help save lives and prevent disability from fungal diseases. In this manuscript, we outline the main public health research priorities for fungal diseases, including the measurement of the fungal disease burden and distribution and the need for improved diagnostics, therapeutics, and vaccines. Characterizing the public health, economic, health system, and individual burden caused by fungal diseases can provide critical insights to promote better prevention and treatment. The development and validation of fungal diagnostic tests that are rapid, accurate, and cost-effective can improve testing practices. Understanding best practices for antifungal prophylaxis can optimize prevention in at-risk populations, while research on antifungal resistance can improve patient outcomes. Investment in vaccines may eliminate certain fungal diseases or lower incidence and mortality. Public health research priorities and approaches may vary by fungal pathogen.

9.
Biomédica (Bogotá) ; 43(Supl. 1): 278-287, ago. 2023. graf
Article En | LILACS | ID: biblio-1533902

Candida auris has been recognized as an emerging multidrug-resistant pathogen with a significant public health burden, causing cases of invasive infection and colonization due to its persistence on inanimate surfaces, ability to colonize skin of some patients, and high transmissibility in healthcare settings. The first sporadic report of the isolation of this species from the ear canal of a patient in Asia was in 2009 and reports from other regions of the world soon followed. However, it was not until 2015 that global epidemiological alerts were communicated as a result of an increasing number of reports of invasive infections caused by C. auris in several countries. Colombia was soon added to this list in 2016 after an unusual increase in the number of C. haemulonii isolates was reported, later confirmed as C. auris. Since the issuing of a national alert by the Colombian National Institute of Health together with the Ministry of Health in 2016, the number of cases reported reached over 2,000 by 2022. Colombian isolates have not shown pan resistance to available antifungals, unlike C. auris strains reported in other regions of the world, which leaves patients in Colombia with therapeutic options for these infections. However, increasing fluconazole resistance is being observed. Whole-genome sequencing of Colombian C. auris isolates has enhanced molecular epidemiological data, grouping Colombian isolates in clade IV together with other South American isolates. Data from Colombia showed that public health authorities, scientific community, and the general public need to be aware of fungal diseases as they present an often-deadly threat to patients.


Candida auris ha sido reconocido como un agente patógeno multirresistente emergente con una carga significativa en la salud pública. Genera casos de infección invasiva y colonización debido a su persistencia en superficies inanimadas, su capacidad para colonizar fácilmente la piel de algunos pacientes y su alta transmisibilidad en el ambiente hospitalario. El primer reporte esporádico de esta especie fue en Asia en el 2009 cuando se realizó su aislamiento a partir del conducto auditivo de un paciente, y pronto le siguieron reportes en otras regiones del mundo. Sin embargo, no fue hasta 2015 que se conocieron las alertas epidemiológicas a nivel mundial debido a un aumento en el número de casos de infecciones causadas por C. auris en varios países. Colombia se sumó a la lista en 2016 luego de un aumento inusual en el número de aislamientos de C. haemulonii informados, que luego se confirmaron como C. auris. Desde que el Instituto Nacional de Salud junto con el Ministerio de Salud emitieron la Alerta Nacional en el 2016, el número de casos reportados superó los 2.000 en el 2022. Los aislamientos colombianos no han mostrado resistencia generalizada a los antifúngicos disponibles, contrario a lo reportado para cepas de C. auris en algunas regiones del mundo, por lo que los pacientes en Colombia aún cuentan con opciones terapéuticas para estas infecciones. No obstante, se ha observado un aumento en la resistencia al fluconazol. La secuenciación del genoma completo agrupó los aislamientos colombianos en el Ciado IV, junto con otros sudamericanos de C. auris, y aportó al conocimiento de los datos epidemiológicos moleculares de esta especie. Los datos de Colombia evidencian que las autoridades de salud pública, la comunidad científica y el público en general deben ser conscientes de las enfermedades fúngicas, ya que a menudo representan una amenaza mortal para los pacientes.


Candida auris , Drug Resistance , Colombia , Whole Genome Sequencing , Fungi , Infections
10.
BMC Health Serv Res ; 23(1): 553, 2023 May 26.
Article En | MEDLINE | ID: mdl-37237256

BACKGROUND: To support public health measures during the COVID-19 pandemic, oral opioid agonist treatment (OAT) take-home doses were expanded in Western countries with positive results. Injectable OAT (iOAT) take-home doses were previously not an eligible option, and were made available for the first time in several sites to align with public health measures. Building upon these temporary risk-mitigating guidelines, a clinic in Vancouver, BC continued to offer two of a possible three daily doses of take-home injectable medications to eligible clients. The present study explores the processes through which take-home iOAT doses impacted clients' quality of life and continuity of care in real-life settings. METHODS: Three rounds of semi-structured qualitative interviews were conducted over a period of seventeen months beginning in July 2021 with eleven participants receiving iOAT take-home doses at a community clinic in Vancouver, British Columbia. Interviews followed a topic guide that evolved iteratively in response to emerging lines of inquiry. Interviews were recorded, transcribed, and then coded using NVivo 1.6 using an interpretive description approach. RESULTS: Participants reported that take-home doses granted them the freedom away from the clinic to have daily routines, form plans, and enjoy unstructured time. Participants appreciated the greater privacy, accessibility, and ability to engage in paid work. Furthermore, participants enjoyed greater autonomy to manage their medication and level of engagement with the clinic. These factors contributed to greater quality of life and continuity of care. Participants shared that their dose was too essential to divert and that they felt safe transporting and administering their medication off-site. In the future, all participants would like more accessible treatment such as access longer take-home prescriptions (e.g., one week), the ability to pick-up at different and convenient locations (e.g., community pharmacies), and a medication delivery service. CONCLUSIONS: Reducing the number of daily onsite injections from two or three to only one revealed the diversity of rich and nuanced needs that added flexibility and accessibility in iOAT can meet. Actions such as licencing diverse opioid medications/formulations, medication pick-up at community pharmacies, and a community of practice that supports clinical decisions are necessary to increase take-home iOAT accessibility.


COVID-19 , Opioid-Related Disorders , Humans , Analgesics, Opioid/therapeutic use , Pandemics , Quality of Life , COVID-19/epidemiology , British Columbia , Opioid-Related Disorders/drug therapy , Opioid-Related Disorders/prevention & control
11.
Microb Genom ; 9(4)2023 04.
Article En | MEDLINE | ID: mdl-37043380

Genomic analyses are widely applied to epidemiological, population genetic and experimental studies of pathogenic fungi. A wide range of methods are employed to carry out these analyses, typically without including controls that gauge the accuracy of variant prediction. The importance of tracking outbreaks at a global scale has raised the urgency of establishing high-accuracy pipelines that generate consistent results between research groups. To evaluate currently employed methods for whole-genome variant detection and elaborate best practices for fungal pathogens, we compared how 14 independent variant calling pipelines performed across 35 Candida auris isolates from 4 distinct clades and evaluated the performance of variant calling, single-nucleotide polymorphism (SNP) counts and phylogenetic inference results. Although these pipelines used different variant callers and filtering criteria, we found high overall agreement of SNPs from each pipeline. This concordance correlated with site quality, as SNPs discovered by a few pipelines tended to show lower mapping quality scores and depth of coverage than those recovered by all pipelines. We observed that the major differences between pipelines were due to variation in read trimming strategies, SNP calling methods and parameters, and downstream filtration criteria. We calculated specificity and sensitivity for each pipeline by aligning three isolates with chromosomal level assemblies and found that the GATK-based pipelines were well balanced between these metrics. Selection of trimming methods had a greater impact on SAMtools-based pipelines than those using GATK. Phylogenetic trees inferred by each pipeline showed high consistency at the clade level, but there was more variability between isolates from a single outbreak, with pipelines that used more stringent cutoffs having lower resolution. This project generated two truth datasets useful for routine benchmarking of C. auris variant calling, a consensus VCF of genotypes discovered by 10 or more pipelines across these 35 diverse isolates and variants for 2 samples identified from whole-genome alignments. This study provides a foundation for evaluating SNP calling pipelines and developing best practices for future fungal genomic studies.


Candida auris , Candida auris/genetics , Genome, Fungal , Phylogeny , Polymorphism, Single Nucleotide , Humans , Candidiasis/drug therapy , Candidiasis/epidemiology , Disease Outbreaks , Drug Resistance, Fungal
12.
Ann Intern Med ; 176(4): 489-495, 2023 04.
Article En | MEDLINE | ID: mdl-36940442

BACKGROUND: Candida auris is an emerging fungal threat that has been spreading in the United States since it was first reported in 2016. OBJECTIVE: To describe recent changes in the U.S. epidemiology of C auris occurring from 2019 to 2021. DESIGN: Description of national surveillance data. SETTING: United States. PATIENTS: Persons with any specimen that was positive for C auris. MEASUREMENTS: Case counts reported to the Centers for Disease Control and Prevention by health departments, volume of colonization screening, and antifungal susceptibility results were aggregated and compared over time and by geographic region. RESULTS: A total of 3270 clinical cases and 7413 screening cases of C auris were reported in the United States through 31 December 2021. The percentage increase in clinical cases grew each year, from a 44% increase in 2019 to a 95% increase in 2021. Colonization screening volume and screening cases increased in 2021 by more than 80% and more than 200%, respectively. From 2019 to 2021, 17 states identified their first C auris case. The number of C auris cases that were resistant to echinocandins in 2021 was about 3 times that in each of the previous 2 years. LIMITATION: Identification of screening cases depends on screening that is done on the basis of need and available resources. Screening is not conducted uniformly across the United States, so the true burden of C auris cases may be underestimated. CONCLUSION: C auris cases and transmission have risen in recent years, with a dramatic increase in 2021. The rise in echinocandin-resistant cases and evidence of transmission is particularly concerning because echinocandins are first-line therapy for invasive Candida infections, including C auris. These findings highlight the need for improved detection and infection control practices to prevent spread of C auris. PRIMARY FUNDING SOURCE: None.


Candida , Candidiasis , Humans , United States/epidemiology , Candida auris , Candidiasis/drug therapy , Candidiasis/epidemiology , Candidiasis/diagnosis , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Echinocandins/therapeutic use , Microbial Sensitivity Tests
13.
Med Mycol ; 61(2)2023 Feb 03.
Article En | MEDLINE | ID: mdl-36715156

Aspergillus fumigatus, an environmental mold, causes life-threatening infections. Studies on the phylogenetic structure of human clinical A. fumigatus isolates are limited. Here, we performed whole genome sequencing of 24 A. fumigatus isolates collected from 18 patients in U.S. healthcare facilities in California. Single-nucleotide polymorphism (SNP) differences between patient isolates ranged from 187 to 70 829 SNPs. For five patients with multiple isolates, we calculated the within-host diversities. Three patients had a within-host diversity that ranged from 4 to 10 SNPs and two patients ranged from 2 to 16 977 SNPs. Findings revealed highly diverse A. fumigatus strains among patients and two patterns of diversity for isolates that come from the same patient, low and extremely high diversity.


Aspergillus fumigatus is an environmental mold. It can cause a severe infection called aspergillosis in patients with weakened immune systems. We analyzed A. fumigatus DNA from patients at California hospitals. We described genetic diversity between samples from the same patients and among different patients. Our findings provide insight on using genomic sequencing to investigate aspergillosis in hospitals.


Aspergillosis , Aspergillus fumigatus , Humans , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/veterinary , Aspergillus fumigatus/genetics , California , Genomics , Phylogeny
14.
Emerg Infect Dis ; 29(1): 110-117, 2023 01.
Article En | MEDLINE | ID: mdl-36573555

Coccidioidomycosis is a fungal infection endemic to hot, arid regions of the western United States, northern Mexico, and parts of Central and South America. Sporadic cases outside these regions are likely travel-associated; alternatively, an infection could be acquired in as-yet unidentified newly endemic locales. A previous study of cases in nonendemic regions with patient self-reported travel history suggested that infections were acquired during travel to endemic regions. We sequenced 19 Coccidioides isolates from patients with known travel histories from that earlier investigation and performed phylogenetic analysis to identify the locations of potential source populations. Our results show that those isolates were phylogenetically linked to Coccidioides subpopulations naturally occurring in 1 of the reported travel locales, confirming that these cases were likely acquired during travel to endemic regions. Our findings demonstrate that genomic analysis is a useful tool for investigating travel-related coccidioidomycosis.


Coccidioidomycosis , Humans , United States/epidemiology , Coccidioidomycosis/epidemiology , Coccidioidomycosis/microbiology , Travel , Phylogeny , Travel-Related Illness , Coccidioides , Genomics
15.
PLoS Negl Trop Dis ; 16(11): e0010787, 2022 11.
Article En | MEDLINE | ID: mdl-36322569

Madurella mycetomatis is one of the main causative agents of mycetoma, a debilitating neglected tropical disease. Improved understanding of the genomic diversity of the fungal and bacterial causes of mycetoma is essential to advances in diagnosis and treatment. Here, we describe a high-quality genome assembly of M. mycetomatis and results of the whole genome sequence analysis of 26 isolates from Sudan. We demonstrate evidence of at least seven genetically diverse lineages and extreme clonality among isolates within these lineages. We also performed shotgun metagenomic analysis of DNA extracted from mycetoma grains and showed that M. mycetomatis reads were detected in all sequenced samples with the average of 11,317 reads (s.d. +/- 21,269) per sample. In addition, 10 (12%) of the 81 tested grain samples contained bacterial reads including Streptococcus sp., Staphylococcus sp. and others.


Madurella , Mycetoma , Humans , Madurella/genetics , Mycetoma/microbiology , Sudan , Metagenomics , Genomics , Neglected Diseases
16.
Microbiol Spectr ; 10(5): e0264522, 2022 10 26.
Article En | MEDLINE | ID: mdl-36190407

Candida auris is an easily transmissible yeast with resistance to different antifungal compounds. Outbreaks of C. auris are mostly observed in intensive care units. To take adequate measures during an outbreak, it is essential to understand the transmission route, which requires isolate genotyping. In 2019, a short tandem repeat (STR) genotyping analysis was developed for C. auris. To determine the discriminatory power of this method, we performed STR analysis of 171 isolates with known whole-genome sequencing (WGS) data using Illumina reads, and we compared their resolutions. We found that STR analysis separated the 171 isolates into four clades (clades I to IV), as was also seen with WGS analysis. Then, to improve the separation of isolates in clade IV, the STR assay was optimized by the addition of 2 STR markers. With this improved STR assay, a total of 32 different genotypes were identified, while all isolates with differences of >50 single-nucleotide polymorphisms (SNPs) were separated by at least 1 STR marker. Altogether, we optimized and validated the C. auris STR panel for clades I to IV and established its discriminatory power, compared to WGS SNP analysis using Illumina reads. IMPORTANCE The emerging fungal pathogen Candida auris poses a threat to public health, mainly causing outbreaks in intensive care units. Genotyping is essential for investigating potential outbreaks and preventing further spread. Previously, we developed a STR genotyping scheme for rapid and high-resolution genotyping, and WGS SNP outcomes for some isolates were compared to STR data. Here, we compared WGS SNP and STR outcomes for a larger sample cohort. Also, we optimized the resolution of this typing scheme with the addition of 2 STR markers. Altogether, we validated and optimized this rapid, reliable, and high-resolution typing scheme for C. auris.


Candida , Candidiasis , Humans , Candida/genetics , Candidiasis/epidemiology , Antifungal Agents/therapeutic use , Candida auris , Microbial Sensitivity Tests , Microsatellite Repeats
17.
Emerg Infect Dis ; 28(9): 1924-1926, 2022 09.
Article En | MEDLINE | ID: mdl-35997504

We characterized 2 clusters of blastomycosis cases in Minnesota, USA, using whole-genome sequencing and single-nucleotide polymorphism analyses. Blastomyces gilchristii was confirmed as the cause of infection. Genomic analyses corresponded with epidemiologic findings for cases of B. gilchristii infections, demonstrating the utility of genomic methods for future blastomycosis outbreak investigations.


Blastomycosis , Blastomyces/genetics , Blastomycosis/epidemiology , Humans , Minnesota/epidemiology , Molecular Epidemiology
19.
Methods Mol Biol ; 2517: 215-228, 2022.
Article En | MEDLINE | ID: mdl-35674957

Candida auris is an urgent public health threat characterized by high drug-resistant rates and rapid spread in healthcare settings worldwide. As part of the C. auris response, molecular surveillance has helped public health officials track the global spread and investigate local outbreaks. Here, we describe whole-genome sequencing analysis methods used for routine C. auris molecular surveillance in the United States; methods include reference selection, reference preparation, quality assessment and control of sequencing reads, read alignment, and single-nucleotide polymorphism calling and filtration. We also describe the newly developed pipeline MycoSNP, a portable workflow for performing whole-genome sequencing analysis of fungal organisms including C. auris.


Candida auris , Candidiasis , Antifungal Agents/therapeutic use , Candida auris/genetics , Candidiasis/microbiology , Humans , United States , Whole Genome Sequencing , Workflow
20.
Future Virol ; 2022 Mar.
Article En | MEDLINE | ID: mdl-35432576

Aim: Currently, there is lack of data regarding rapid antigen detection (RAD) kits to detect SARS-CoV-2 B.1.617.2 virus. Objective: The purpose of this evaluation is to assess analytical sensitivity of 12 RAD kits against SARS-CoV-2 B.1.617.2. Study design: Analytical sensitivity was determined by limit of detection (LOD). A serial tenfold dilution set from a respiratory specimen collected from a COVID-19 patient infected by SARS-CoV-2 B.1.617.2 was used. RT-PCR was used as a reference method. Results: The LOD results showed that 11 and one RAD kits were 100- and 1000-fold less sensitive than RT-PCR respectively. Conclusion: The results showed that the RAD kits evaluated in this study may be used for first-line screening of the SARS-CoV-2 B.1.617.2 variant.

...