Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Free Radic Biol Med ; 210: 406-415, 2024 01.
Article En | MEDLINE | ID: mdl-38061606

BACKGROUND AND AIMS: Dendritic cells (DCs), professional antigen-presenting cells, play an important role in pathologies by controlling adaptive immune responses. However, their adaptation to and functionality in hypercholesterolemia, a driving factor in disease onset and progression of atherosclerosis remains to be established. METHODS: In this study, we addressed the immediate impact of high fat diet-induced hypercholesterolemia in low-density lipoprotein receptor deficient (Ldlr-/-) mice on separate DC subsets, their compartmentalization and functionality. RESULTS: While hypercholesterolemia induced a significant rise in bone marrow myeloid and dendritic cell progenitor (MDP) frequency and proliferation rate after high fat diet feeding, it did not affect DC subset numbers in lymphoid tissue. Hypercholesterolemia led to almost immediate and persistent augmentation in granularity of conventional DCs (cDCs), in particular cDC2, reflecting progressive lipid accumulation by these subsets. Plasmacytoid DCs were only marginally and transiently affected. Lipid loading increased co-stimulatory molecule expression and ROS accumulation by cDC2. Despite this hyperactivation, lipid-laden cDC2 displayed a profoundly reduced capacity to stimulate naïve CD4+ T cells. CONCLUSION: Our data provide evidence that in hypercholesterolemic conditions, peripheral cDC2 subsets engulf lipids in situ, leading to a more activated status characterized by cellular ROS accumulation while, paradoxically, compromising their T cell priming ability. These findings will have repercussions not only for lipid driven cardiometabolic disorders like atherosclerosis, but also for adaptive immune responses to pathogens and/or endogenous (neo) antigens under conditions of hyperlipidemia.


Atherosclerosis , Hypercholesterolemia , Mice , Animals , T-Lymphocytes , Reactive Oxygen Species/metabolism , Hypercholesterolemia/genetics , Dendritic Cells , Atherosclerosis/metabolism , Lipids
2.
Biomedicines ; 10(5)2022 May 17.
Article En | MEDLINE | ID: mdl-35625889

BACKGROUND: Pathogens or trauma-derived danger signals induced maturation and activation of plasmacytoid dendritic cells (pDCs) is a pivotal step in pDC-dependent host defense. Exposure of pDC to cardiometabolic disease-associated lipids and proteins may well influence critical signaling pathways, thereby compromising immune responses against endogenous, bacterial and viral pathogens. In this study, we have addressed if hyperlipidemia impacts human pDC activation, cytokine response and capacity to prime CD4+ T cells. METHODS AND RESULTS: We show that exposure to pro-atherogenic oxidized low-density lipoproteins (oxLDL) led to pDC lipid accumulation, which in turn ablated a Toll-like receptor (TLR) 7 and 9 dependent up-regulation of pDC maturation markers CD40, CD83, CD86 and HLA-DR. Moreover, oxLDL dampened TLR9 activation induced the production of pro-inflammatory cytokines in a NUR77/IRF7 dependent manner and impaired the capacity of pDCs to prime and polarize CD4+ T helper (Th) cells. CONCLUSION: Our findings reveal profound effects of dyslipidemia on pDC responses to pathogen-derived signals.

4.
PLoS One ; 16(5): e0251599, 2021.
Article En | MEDLINE | ID: mdl-33984028

Chronic HIV infection may exacerbate atherosclerotic vascular disease, which at advanced stages presents as necrotic plaques rich in crystalline cholesterol. Such lesions can catastrophically rupture precipitating myocardial infarct and stroke, now important causes of mortality in those living with HIV. However, in this population little is known about plaque structure relative to crystalline content and its chemical composition. Here, we first interrogated plaque crystal structure and composition in atherosclerotic SIV-infected macaques using non-linear optical microscopy. By stimulated Raman scattering and second harmonic generation approaches both amorphous and crystalline plaque lipid was detected and the crystal spectral profile indicated a cholesterol ester (CE) dominated composition. Versus controls, SIV+ samples had a greater number of cholesterol crystals (CCs), with the difference, in part, accounted for by crystals of a smaller length. Given the ester finding, we profiled HIV+ plaques and also observed a CE crystalline spectral signature. We further profiled plaques from Ldlr-/- mice fed a high fat diet, and likewise, found CE-dominate crystals. Finally, macrophage exposure to CCs or AcLDL induced auto-fluorescent puncta that co-stained with the LC3B autophagy sensor. In aggregate, we show that atheromatous plaques from mice, macaques and humans, display necrotic cores dominated by esterified CCs, and that plaque macrophages may induce autophagic vesicle formation upon encountering CCs. These findings help inform our knowledge of plaque core lipid evolution and how the process may incite systemic inflammation.


Cholesterol Esters/analysis , HIV Infections/pathology , Plaque, Atherosclerotic/pathology , Simian Acquired Immunodeficiency Syndrome/pathology , Animals , HIV/isolation & purification , HIV Infections/complications , Macaca , Male , Mice , Mice, Inbred C57BL , Optical Imaging , Plaque, Atherosclerotic/complications , RAW 264.7 Cells , Simian Acquired Immunodeficiency Syndrome/complications , Simian Immunodeficiency Virus/isolation & purification
5.
Metabolites ; 10(9)2020 Aug 19.
Article En | MEDLINE | ID: mdl-32824900

Changes in modern dietary habits such as consumption of Western-type diets affect physiology on several levels, including metabolism and inflammation. It is currently unclear whether changes in systemic metabolism due to dietary interventions are long-lasting and affect acute inflammatory processes. Here, we investigated how high-fat diet (HFD) feeding altered systemic metabolism and the metabolomic response to inflammatory stimuli. We conducted metabolomic profiling of sera collected from Ldlr-/- mice on either regular chow diet (CD) or HFD, and after an additional low-dose lipopolysaccharide (LPS) challenge. HFD feeding, as well as LPS treatment, elicited pronounced metabolic changes. HFD qualitatively altered the systemic metabolic response to LPS; particularly, serum concentrations of fatty acids and their metabolites varied between LPS-challenged mice on HFD or CD, respectively. To investigate whether systemic metabolic changes were sustained long-term, mice fed HFD were shifted back to CD after four weeks (HFD > CD). When shifted back to CD, serum metabolites returned to baseline levels, and so did the response to LPS. Our results imply that systemic metabolism rapidly adapts to dietary changes. The profound systemic metabolic rewiring observed in response to diet might affect immune cell reprogramming and inflammatory responses.

6.
Arthritis Rheumatol ; 72(2): 359-370, 2020 02.
Article En | MEDLINE | ID: mdl-31464028

OBJECTIVE: Patients with hypomorphic mutations in DNase II develop a severe and debilitating autoinflammatory disease. This study was undertaken to compare the disease parameters in these patients to those in a murine model of DNase II deficiency, and to evaluate the role of specific nucleic acid sensors and identify the cell types responsible for driving the autoinflammatory response. METHODS: To avoid embryonic death, Dnase2-/- mice were intercrossed with mice that lacked the type I interferon (IFN) receptor (Ifnar-/- ). The hematologic changes and immune status of these mice were evaluated using complete blood cell counts, flow cytometry, serum cytokine enzyme-linked immunosorbent assays, and liver histology. Effector cell activity was determined by transferring T cells from Dnase2-/- × Ifnar-/- double-knockout (DKO) mice into Rag1-/- mice, and 4 weeks after cell transfer, induced changes were assessed in the recipient mice. RESULTS: In Dnase2-/- × Ifnar-/- DKO mice, many of the disease features found in DNase II-deficient patients were recapitulated, including cytopenia, extramedullary hematopoiesis, and liver fibrosis. Dnase2+/+ × Rag1-/- mice (n > 22) developed a hematologic disorder that was attributed to the transfer of an unusual IFNγ-producing T cell subset from the spleens of donor Dnase2-/- × Ifnar-/- DKO mice. Autoinflammation in this murine model did not depend on the stimulator of IFN genes (STING) pathway but was highly dependent on the chaperone protein Unc93B1. CONCLUSION: Dnase2-/- × Ifnar-/- DKO mice may be a valid model for exploring the innate and adaptive immune mechanisms responsible for the autoinflammation similar to that seen in DNASE2-hypomorphic patients. In this murine model, IFNγ is required for T cell activation and the development of clinical manifestations. The role of IFNγ in DNASE2-deficient patient populations remains to be determined, but the ability of Dnase2-/- mouse T cells to transfer disease to Rag1-/- mice suggests that T cells may be a relevant therapeutic target in patients with IFN-related systemic autoinflammatory diseases.


Autoimmune Diseases/etiology , Endodeoxyribonucleases/deficiency , Inflammation/immunology , Interferon-gamma/biosynthesis , Th1 Cells/metabolism , Animals , Disease Models, Animal , Interferon Type I , Mice , Mice, Inbred C57BL
7.
Immunity ; 51(6): 997-1011.e7, 2019 12 17.
Article En | MEDLINE | ID: mdl-31851905

Toll-like receptor (TLR) activation induces inflammatory responses in macrophages by activating temporally defined transcriptional cascades. Whether concurrent changes in the cellular metabolism that occur upon TLR activation influence the quality of the transcriptional responses remains unknown. Here, we investigated how macrophages adopt their metabolism early after activation to regulate TLR-inducible gene induction. Shortly after TLR4 activation, macrophages increased glycolysis and tricarboxylic acid (TCA) cycle volume. Metabolic tracing studies revealed that TLR signaling redirected metabolic fluxes to generate acetyl-Coenzyme A (CoA) from glucose resulting in augmented histone acetylation. Signaling through the adaptor proteins MyD88 and TRIF resulted in activation of ATP-citrate lyase, which in turn facilitated the induction of distinct LPS-inducible gene sets. We postulate that metabolic licensing of histone acetylation provides another layer of control that serves to fine-tune transcriptional responses downstream of TLR activation. Our work highlights the potential of targeting the metabolic-epigenetic axis in inflammatory settings.


ATP Citrate (pro-S)-Lyase/metabolism , Acetyl Coenzyme A/metabolism , Histones/metabolism , Macrophages/metabolism , Toll-Like Receptor 4/metabolism , Acetylation , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Citric Acid Cycle/physiology , Glycolysis/physiology , Humans , Lipopolysaccharides/metabolism , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Signal Transduction , Transcription, Genetic/genetics
8.
Immunity ; 51(5): 794-811, 2019 11 19.
Article En | MEDLINE | ID: mdl-31747581

The consumption of Western-type calorically rich diets combined with chronic overnutrition and a sedentary lifestyle in Western societies evokes a state of chronic metabolic inflammation, termed metaflammation. Metaflammation contributes to the development of many prevalent non-communicable diseases (NCDs), and these lifestyle-associated pathologies represent a rising public health problem with global epidemic dimensions. A better understanding of how modern lifestyle and Western diet (WD) activate immune cells is essential for the development of efficient preventive and therapeutic strategies for common NCDs. Here, we review the current mechanistic understanding of how the Western lifestyle can induce metaflammation, and we discuss how this knowledge can be translated to protect the public from the health burden associated with their selected lifestyle.


Diet, Western , Immune System/physiology , Animals , Diet , Disease Susceptibility , Feedback, Physiological , Gastrointestinal Microbiome , Homeostasis , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Inflammation/etiology , Inflammation/metabolism , Organ Specificity
10.
Immunity ; 48(5): 911-922.e7, 2018 05 15.
Article En | MEDLINE | ID: mdl-29768176

Unc-93 homolog B1 (UNC93B1) is a key regulator of nucleic acid (NA)-sensing Toll-like receptors (TLRs). Loss of NA-sensing TLR responses in UNC93B1-deficient patients facilitates Herpes simplex virus type 1 (HSV-1) encephalitis. UNC93B1 is thought to guide NA-sensing TLRs from the endoplasmic reticulum (ER) to their respective endosomal signaling compartments and to guide the flagellin receptor TLR5 to the cell surface, raising the question of how UNC93B1 mediates differential TLR trafficking. Here, we report that UNC93B1 regulates a step upstream of the differential TLR trafficking process. We discovered that UNC93B1 deficiency resulted in near-complete loss of TLR3 and TLR7 proteins in primary splenic mouse dendritic cells and macrophages, showing that UNC93B1 is critical for maintaining TLR expression. Notably, expression of an ER-retained UNC93B1 version was sufficient to stabilize TLRs and largely restore endosomal TLR trafficking and activity. These data are critical for an understanding of how UNC93B1 can regulate the function of a broad subset of TLRs.


Endosomes/immunology , Membrane Transport Proteins/immunology , Molecular Chaperones/immunology , Toll-Like Receptors/immunology , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , HEK293 Cells , Humans , Macrophages/immunology , Macrophages/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Stability , Protein Transport/immunology , Signal Transduction/genetics , Signal Transduction/immunology , THP-1 Cells , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
11.
Cell ; 172(1-2): 162-175.e14, 2018 01 11.
Article En | MEDLINE | ID: mdl-29328911

Long-term epigenetic reprogramming of innate immune cells in response to microbes, also termed "trained immunity," causes prolonged altered cellular functionality to protect from secondary infections. Here, we investigated whether sterile triggers of inflammation induce trained immunity and thereby influence innate immune responses. Western diet (WD) feeding of Ldlr-/- mice induced systemic inflammation, which was undetectable in serum soon after mice were shifted back to a chow diet (CD). In contrast, myeloid cell responses toward innate stimuli remained broadly augmented. WD-induced transcriptomic and epigenomic reprogramming of myeloid progenitor cells led to increased proliferation and enhanced innate immune responses. Quantitative trait locus (QTL) analysis in human monocytes trained with oxidized low-density lipoprotein (oxLDL) and stimulated with lipopolysaccharide (LPS) suggested inflammasome-mediated trained immunity. Consistently, Nlrp3-/-/Ldlr-/- mice lacked WD-induced systemic inflammation, myeloid progenitor proliferation, and reprogramming. Hence, NLRP3 mediates trained immunity following WD and could thereby mediate the potentially deleterious effects of trained immunity in inflammatory diseases.


Cellular Reprogramming , Diet, Western , Epigenesis, Genetic , Immunity, Innate , Immunologic Memory , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Adult , Aged , Animals , Cells, Cultured , Female , Humans , Lipoproteins, LDL/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Myeloid Cells/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Quantitative Trait Loci , Receptors, LDL/genetics
12.
J Immunol ; 197(4): 1044-53, 2016 08 15.
Article En | MEDLINE | ID: mdl-27354219

Systemic lupus erythematosus (SLE) is a chronic, life-threatening autoimmune disorder, leading to multiple organ pathologies and kidney destruction. Analyses of numerous murine models of spontaneous SLE have revealed a critical role for endosomal TLRs in the production of autoantibodies and development of other clinical disease manifestations. Nevertheless, the corresponding TLR9-deficient autoimmune-prone strains consistently develop more severe disease pathology. Injection of BALB/c mice with 2,6,10,14-tetramethylpentadecane (TMPD), commonly known as pristane, also results in the development of SLE-like disease. We now show that Tlr9(-/-) BALB/c mice injected i.p. with TMPD develop more severe autoimmunity than do their TLR-sufficient cohorts. Early indications include an increased accumulation of TLR7-expressing Ly6C(hi) inflammatory monocytes at the site of injection, upregulation of IFN-regulated gene expression in the peritoneal cavity, and an increased production of myeloid lineage precursors (common myeloid progenitors and granulocyte myeloid precursors) in the bone marrow. TMPD-injected Tlr9(-/-) BALB/c mice develop higher autoantibody titers against RNA, neutrophil cytoplasmic Ags, and myeloperoxidase than do TMPD-injected wild-type BALB/c mice. The TMP-injected Tlr9(-/-) mice, and not the wild-type mice, also develop a marked increase in glomerular IgG deposition and infiltrating granulocytes, much more severe glomerulonephritis, and a reduced lifespan. Collectively, the data point to a major role for TLR7 in the response to self-antigens in this model of experimental autoimmunity. Therefore, the BALB/c pristane model recapitulates other TLR7-driven spontaneous models of SLE and is negatively regulated by TLR9.


Cell Lineage , Lupus Nephritis/pathology , Myeloid Cells/pathology , Toll-Like Receptor 9/deficiency , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Enzyme-Linked Immunospot Assay , Flow Cytometry , Immunosuppressive Agents/toxicity , Lupus Nephritis/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Myeloid Cells/immunology , Polymerase Chain Reaction , Terpenes/toxicity
13.
Semin Immunol ; 28(4): 384-93, 2016 08.
Article En | MEDLINE | ID: mdl-27113267

Efforts to reverse the pathologic consequences of vulnerable plaques are often stymied by the complex treatment resistant pro-inflammatory environment within the plaque. This suggests that pro-atherogenic stimuli, such as LDL cholesterol and high fat diets may impart longer lived signals on (innate) immune cells that persist even after reversing the pro-atherogenic stimuli. Recently, a series of studies challenged the traditional immunological paradigm that innate immune cells cannot display memory characteristics. Epigenetic reprogramming in these myeloid cell subsets, after exposure to certain stimuli, has been shown to alter the expression of genes upon re-exposure. This phenomenon has been termed trained innate immunity or innate immune memory. The changed responses of 'trained' innate immune cells can confer nonspecific protection against secondary infections, suggesting that innate immune memory has likely evolved as an ancient mechanism to protect against pathogens. However, dysregulated processes of immunological imprinting mediated by trained innate immunity may also be detrimental under certain conditions as the resulting exaggerated immune responses could contribute to autoimmune and inflammatory diseases, such as atherosclerosis. Pro-atherogenic stimuli most likely cause epigenetic modifications that persist for prolonged time periods even after the initial stimulus has been removed. In this review we discuss the concept of trained innate immunity in the context of a hyperlipidemic environment and atherosclerosis. According to this idea the epigenome of myeloid (progenitor) cells is presumably modified for prolonged periods of time, which, in turn, could evoke a condition of continuous immune cell over-activation.


Atherosclerosis/immunology , Chromatin Assembly and Disassembly , Immune System , Immunity, Heterologous , Immunity, Innate , Animals , Epigenesis, Genetic , Humans , Immunologic Memory , Lymphocyte Activation
14.
Cell ; 163(6): 1428-43, 2015 Dec 03.
Article En | MEDLINE | ID: mdl-26638072

Host-microbiome co-evolution drives homeostasis and disease susceptibility, yet regulatory principles governing the integrated intestinal host-commensal microenvironment remain obscure. While inflammasome signaling participates in these interactions, its activators and microbiome-modulating mechanisms are unknown. Here, we demonstrate that the microbiota-associated metabolites taurine, histamine, and spermine shape the host-microbiome interface by co-modulating NLRP6 inflammasome signaling, epithelial IL-18 secretion, and downstream anti-microbial peptide (AMP) profiles. Distortion of this balanced AMP landscape by inflammasome deficiency drives dysbiosis development. Upon fecal transfer, colitis-inducing microbiota hijacks this microenvironment-orchestrating machinery through metabolite-mediated inflammasome suppression, leading to distorted AMP balance favoring its preferential colonization. Restoration of the metabolite-inflammasome-AMP axis reinstates a normal microbiota and ameliorates colitis. Together, we identify microbial modulators of the NLRP6 inflammasome and highlight mechanisms by which microbiome-host interactions cooperatively drive microbial community stability through metabolite-mediated innate immune modulation. Therefore, targeted "postbiotic" metabolomic intervention may restore a normal microenvironment as treatment or prevention of dysbiosis-driven diseases.


Colon/immunology , Colon/microbiology , Inflammasomes/immunology , Microbiota , Receptors, Cell Surface/metabolism , Signal Transduction , Animals , Antimicrobial Cationic Peptides , Colitis/chemically induced , Colitis/drug therapy , Colon/metabolism , Dysbiosis/metabolism , Germ-Free Life , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Interleukin-18/immunology , Mice , Mice, Inbred C57BL , Receptors, Cell Surface/genetics , Taurine/administration & dosage
15.
Ann Rheum Dis ; 74(11): 2062-9, 2015 Nov.
Article En | MEDLINE | ID: mdl-24914072

OBJECTIVE: Nephrogenic systemic fibrosis (NSF) is a progressive fibrosing disorder that may develop in patients with chronic kidney disease after administration of gadolinium (Gd)-based contrast agents (GBCAs). In the setting of impaired renal clearance of GBCAs, Gd deposits in various tissues and fibrosis subsequently develops. However, the precise mechanism by which fibrosis occurs in NSF is incompletely understood. Because other profibrotic agents, such as silica or asbestos, activate the nucleotide-binding oligomerisation domain (NOD)-like receptor protein 3 (NLRP3) inflammasome and initiate interleukin (IL)-1ß release with the subsequent development of fibrosis, we evaluated the effects of GBCAs on inflammasome activation. METHODS: Bone marrow derived macrophages from C57BL/6, Nlrp3(-/-) and Asc(-/-) mice were incubated with three Gd-containing compounds and IL-1ß activation and secretion was detected by ELISA and western blot analysis. Inflammasome activation and regulation was investigated in IL-4- and interferon (IFN)γ-polarised macrophages by ELISA, quantitative real time (qRT)-PCR and NanoString nCounter analysis. Furthermore, C57BL/6 and Nlrp3(-/-)mice were intraperitoneally injected with GBCA and recruitment of inflammatory cells to the peritoneum was analysed by fluorescence-activated cell sorting (FACS). RESULTS: Free Gd and GBCAs activate the NLRP3 inflammasome and induce IL-1ß secretion in vitro. Gd-diethylenetriaminepentaacetic acid also induces the recruitment of neutrophils and inflammatory monocytes to the peritoneum in vivo. Gd activated IL-4-polarised macrophages more effectively than IFNγ-polarised macrophages, which preferentially expressed genes known to downregulate inflammasome activity. CONCLUSIONS: These data suggest that Gd released from GBCAs triggers a NLRP3 inflammasome-dependent inflammatory response that leads to fibrosis in an appropriate clinical setting. The preferential activation of IL-4-differentiated macrophages is consistent with the predominantly fibrotic presentation of NSF.


Carrier Proteins/drug effects , Contrast Media/pharmacology , Gadolinium/pharmacology , Inflammasomes/drug effects , Interleukin-1beta/drug effects , Macrophages/drug effects , Nephrogenic Fibrosing Dermopathy/immunology , Peritoneum/drug effects , Peritonitis/immunology , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/immunology , CARD Signaling Adaptor Proteins , Carrier Proteins/genetics , Carrier Proteins/immunology , Contrast Media/adverse effects , Disease Models, Animal , Gadolinium/adverse effects , Gadolinium DTPA/adverse effects , Gadolinium DTPA/pharmacology , Inflammasomes/immunology , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Macrophages/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Nephrogenic Fibrosing Dermopathy/chemically induced , Nephrogenic Fibrosing Dermopathy/genetics , Organometallic Compounds/adverse effects , Organometallic Compounds/pharmacology , Peritoneum/immunology , Peritonitis/chemically induced , Peritonitis/genetics
19.
Circ Res ; 109(12): 1387-95, 2011 Dec 09.
Article En | MEDLINE | ID: mdl-22021930

RATIONALE: Unlike conventional dendritic cells, plasmacytoid DCs (PDC) are poor in antigen presentation and critical for type I interferon response. Though proposed to be present in human atherosclerotic lesions, their role in atherosclerosis remains elusive. OBJECTIVE: To investigate the role of PDC in atherosclerosis. METHODS AND RESULTS: We show that PDC are scarcely present in human atherosclerotic lesions and almost absent in mouse plaques. Surprisingly, PDC depletion by 120G8 mAb administration was seen to promote plaque T-cell accumulation and exacerbate lesion development and progression in LDLr⁻/⁻ mice. PDC depletion was accompanied by increased CD4⁺ T-cell proliferation, interferon-γ expression by splenic T cells, and plasma interferon-γ levels. Lymphoid tissue PDC from atherosclerotic mice showed increased indoleamine 2,3-dioxygenase (IDO) expression and IDO blockage abrogated the PDC suppressive effect on T-cell proliferation. CONCLUSIONS: Our data reveal a protective role for PDC in atherosclerosis, possibly by dampening T-cell proliferation and activity in peripheral lymphoid tissue, rendering PDC an interesting target for future therapeutic interventions.


Atherosclerosis/pathology , Atherosclerosis/physiopathology , CD4-Positive T-Lymphocytes/pathology , Cell Proliferation , Dendritic Cells/pathology , Dendritic Cells/physiology , Animals , Antibodies, Monoclonal/pharmacology , Atherosclerosis/metabolism , Cells, Cultured , Coculture Techniques , Dendritic Cells/drug effects , Disease Models, Animal , Disease Progression , Female , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, LDL/deficiency , Receptors, LDL/genetics , Receptors, LDL/metabolism
20.
Arterioscler Thromb Vasc Biol ; 31(10): 2251-60, 2011 Oct.
Article En | MEDLINE | ID: mdl-21817098

OBJECTIVE: Obese adipose tissue shows hallmarks of chronic inflammation, which promotes the development of metabolic disorders. The mechanisms by which immune cells interact with each other or with metabolism-associated cell types, and the players involved, are still unclear. The CD40-CD40L costimulatory dyad plays a pivotal role in immune responses and in diseases such as atherosclerosis and may therefore be a mediator of obesity. Here we investigated whether CD40L is involved in adipose tissue inflammation and its associated metabolic changes. METHODS AND RESULTS: To assess a putative role of CD40L in obesity in vivo, we evaluated metabolic and inflammatory consequences of 18 weeks of high-fat feeding in CD40L(+/+) and CD40L(-/-) mice. In addition, C57Bl6 mice were injected with neutralizing anti-CD40L (αCD40L) antibody for 12 weeks while being fed a high-fat diet. Genetic deficiency of CD40L attenuated the development of diet-induced obesity, hepatic steatosis, and increased systemic insulin sensitivity. In adipose tissue, it impaired obesity-induced immune cell infiltration and the associated deterioration of glucose and lipid metabolism. Accordingly, αCD40L treatment improved systemic insulin sensitivity, glucose tolerance, and CD4(+) T-cell infiltration in adipose tissue with limited effects on adipose tissue weight. CONCLUSIONS: CD40L plays a crucial role in the development of obesity-induced inflammation and metabolic complications.


Adipose Tissue/immunology , CD40 Ligand/deficiency , Fatty Liver/prevention & control , Insulin Resistance , Obesity/prevention & control , Panniculitis/prevention & control , Adipose Tissue/metabolism , Animals , Antibodies, Neutralizing/administration & dosage , Blood Glucose/metabolism , CD4-Positive T-Lymphocytes/immunology , CD40 Ligand/genetics , CD40 Ligand/immunology , Disease Models, Animal , Fatty Liver/genetics , Fatty Liver/immunology , Fatty Liver/metabolism , Inflammation Mediators/metabolism , Insulin/blood , Lipid Metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/complications , Obesity/genetics , Obesity/immunology , Obesity/metabolism , Obesity/physiopathology , Panniculitis/genetics , Panniculitis/immunology , Panniculitis/metabolism , Time Factors , Weight Gain
...