Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38470808

RESUMEN

In order to maximally reduce the toxicity of fullerenol (the first derivative of C60, FD-C60), and increase its biomedical efficiency, the second derivative SD-C60 (3HFWC, Hyper-Harmonized Hydroxylated Fullerene Water Complex) was created. Several different methods were applied in the comparative characterization of FD-C60 and SD-C60 with the same OH groups in their core. FD-C60 as an individual structure was about 1.3 nm in size, while SD-C60 as an individual structure was 10-30 nm in size. Based on ten physicochemical methods and techniques, FD-C60 and SD-C60 were found to be two different substances in terms of size, structure, and physicochemical properties; FD-C60, at 100 °C, had endothermic characteristics, while SD-C60, at 133 °C, had exothermic characteristics; FD-C60 did not have water layers, while SD-C60 had water layers; the zeta potential of FD-C60 was -25.85 mV, while it was -43.29 mV for SD-C60. SD-C60 is a promising substance for use in cosmetics and pharmaceuticals.

2.
Adv Healthc Mater ; 12(30): e2301131, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37660290

RESUMEN

Bacterial infection is a crucial complication in implant restoration, in particular in permanent skin-penetrating implants. Therein, the resulting gap between transcutaneous implant and skin represents a permanent infection risk, limiting the field of application and the duration of application. To overcome this limitation, a tight physiological connection is required to achieve a biological and mechanical welding for a long-term stable closure including self-healing probabilities. This study describes a new approach, wherein the implant is connected covalently to a highly porous electrospun fleece featuring physiological dermal integration potential. The integrative potential of the scaffold is shown in vitro and confirmed in vivo, further demonstrating tissue integration by neovascularization, extracellular matrix formation, and prevention of encapsulation. To achieve a covalent connection between fleece and implant surface, self-initiated photografting and photopolymerization of hydroxyethylmethacrylate is combined with a new crosslinker (methacrylic acid coordinated titanium-oxo clusters) on proton-abstractable implant surfaces. For implant modification, the attached fleece is directed perpendicular from the implant surface into the surrounding dermal tissue. First in vitro skin implantations demonstrate the implants' dermal integration capability as well as wound closure potential on top of the fleece by epithelialization, establishing a bacteria-proof and self-healing connection of skin and transcutaneous implant.


Asunto(s)
Biomimética , Prótesis e Implantes , Humanos , Piel , Titanio , Neovascularización Patológica , Propiedades de Superficie
3.
Materials (Basel) ; 15(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35454448

RESUMEN

The development of novel fibrous biomaterials and further processing of medical devices is still challenging. For instance, titanium(IV) oxide is a well-established biocompatible material, and the synthesis of TiOx particles and coatings via the sol-gel process has frequently been published. However, synthesis protocols of sol-gel-derived TiOx fibers are hardly known. In this publication, the authors present a synthesis and fabrication of purely sol-gel-derived TiOx fiber fleeces starting from the liquid sol-gel precursor titanium ethylate (TEOT). Here, the α-hydroxy-carboxylic acid lactic acid (LA) was used as a chelating ligand to reduce the reactivity towards hydrolysis of TEOT enabling a spinnable sol. The resulting fibers were processed into a non-woven fleece, characterized with FTIR, 13C-MAS-NMR, XRD, and screened with regard to their stability in physiological solution. They revealed an unexpected dependency between the LA content and the dissolution behavior. Finally, in vitro cell culture experiments proved their potential suitability as an open-mesh structured scaffold material, even for challenging applications such as therapeutic medicinal products (ATMPs).

4.
Beilstein J Nanotechnol ; 8: 1484-1493, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900602

RESUMEN

New multifunctional nanoparticles (NPs) that can be used as contrast agents (CA) in different imaging techniques, such as photoluminescence (PL) microscopy and magnetic resonance imaging (MRI), open new possibilities for medical imaging, e.g., in the fields of diagnostics or tissue characterization in regenerative medicine. The focus of this study is on the synthesis and characterization of CaF2:(Tb3+,Gd3+) NPs. Fabricated in a wet-chemical procedure, the spherical NPs with a diameter of 5-10 nm show a crystalline structure. Simultaneous doping of the NPs with different lanthanide ions, leading to paramagnetism and fluorescence, makes them suitable for MR and PL imaging. Owing to the Gd3+ ions on the surface, the NPs reduce the MR T1 relaxation time constant as a function of their concentration. Thus, the NPs can be used as a MRI CA with a mean relaxivity of about r = 0.471 mL·mg-1·s-1. Repeated MRI examinations of four different batches prove the reproducibility of the NP synthesis and determine the long-term stability of the CAs. No cytotoxicity of NP concentrations between 0.5 and 1 mg·mL-1 was observed after exposure to human dermal fibroblasts over 24 h. Overall this study shows, that the CaF2:(Tb3+,Gd3+) NPs are suitable for medical imaging.

5.
Methods Mol Biol ; 1601: 111-122, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28470522

RESUMEN

Nanoparticles (NPs) in biotechnology hold great promise for revolutionizing medical treatments and therapies. In order to bring NPs into clinical application there is a number of preclinical in vitro and in vivo tests, which have to be applied before. The initial in vitro evaluation includes a detailed physicochemical characterization as well as biocompatibility tests, among others. For determination of biocompatibility at the cellular level, the correct choice of the in vitro assay as well as NP pretreatment is absolutely essential. There are a variety of assay technologies available that use standard plate readers to measure metabolic markers to estimate the number of viable cells in culture. Each cell viability assay has its own set of advantages and disadvantages. Regardless of the assay method chosen, the major factors critical for reproducibility and success include: (1) choosing the right assay after comparing optical NP properties with the read-out method of the assay, (2) verifying colloidal stability of NPs in cell culture media, (3) preparing a sterile and stable NP dispersion in cell culture media used in the assay, (4) using a tightly controlled and consistent cell model allowing appropriate characterization of NPs. This chapter will briefly summarize these different critical points, which can occur during biocompatibility screening applications of NPs.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Ensayo de Materiales/métodos , Nanopartículas/química , Nanopartículas/toxicidad , Células CACO-2 , Coloides/química , Medios de Cultivo/química , Espectroscopía Dieléctrica , Sistemas de Liberación de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Tamaño de la Partícula
7.
Chemistry ; 15(29): 7150-5, 2009 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-19544503

RESUMEN

Herein we report for the first time full details on the synthesis and structural characterization of novel homodinuclear bridging cobalt and nickel borylene complexes containing bridging carbonyl ligands, an unusual coordination motif rarely before observed for homodinuclear borylene complexes. Furthermore, the homodinuclear nickel complex represents the first instance of a nickel borylene complex. Quantum chemical analyses of charge-density topology, electron localization function (ELF) and natural charges indicate the absence of direct metal-metal bonds in both the cobalt and nickel systems, in contradiction with electron counting. The topology of the Laplacian of the electron density and of the ELF around the bridging boron atom is consistent with a bis-metallo-substituted borane situation for the dicobalt system, but with a three-center-bonding borylene for the dinickel complex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...