Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mamm Genome ; 34(2): 156-165, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36595063

RESUMEN

Comprehensive detailed characterization of new mouse models can be challenging due to the individual focus involved in developing these models. Often models are engineered to test a specific hypothesis in a limited number of tissues, stages, and/or other contexts. Whether or not the model produces the desired phenotypes, phenotyping beyond the desired context can be extremely work intensive and these studies are often not undertaken. However, the general information resulting from broader phenotyping can be invaluable to the wider scientific community. The International Mouse Phenotyping Consortium (IMPC) and its subsidiaries, like the Knockout Mouse Project (KOMP), has made great strides in streamlining this process. In particular, the use of microCT has been an invaluable resource in examining internal organ systems throughout fetal/developmental stages. Here, we provide several novel vignettes demonstrating the utility of microCT in uncovering cardiac phenotypes both based on human disease correlations and those that are unpredicted.


Asunto(s)
Implantación del Embrión , Organogénesis , Ratones , Animales , Humanos , Ratones Noqueados , Microtomografía por Rayos X/métodos , Fenotipo , Imagenología Tridimensional/métodos
2.
Hum Mol Genet ; 29(13): 2171-2184, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32504080

RESUMEN

Lysinuric protein intolerance (LPI) is an inborn error of cationic amino acid (arginine, lysine, ornithine) transport caused by biallelic pathogenic variants in SLC7A7, which encodes the light subunit of the y+LAT1 transporter. Treatments for the complications of LPI, including growth failure, renal disease, pulmonary alveolar proteinosis, autoimmune disorders and osteoporosis, are limited. Given the early lethality of the only published global Slc7a7 knockout mouse model, a viable animal model to investigate global SLC7A7 deficiency is needed. Hence, we generated two mouse models with global Slc7a7 deficiency (Slc7a7em1Lbu/em1Lbu; Slc7a7Lbu/Lbu and Slc7a7em1(IMPC)Bay/em1(IMPC)Bay; Slc7a7Bay/Bay) using CRISPR/Cas9 technology by introducing a deletion of exons 3 and 4. Perinatal lethality was observed in Slc7a7Lbu/Lbu and Slc7a7Bay/Bay mice on the C57BL/6 and C57BL/6NJ inbred genetic backgrounds, respectively. We noted improved survival of Slc7a7Lbu/Lbu mice on the 129 Sv/Ev × C57BL/6 F2 background, but postnatal growth failure occurred. Consistent with human LPI, these Slc7a7Lbu/Lbu mice exhibited reduced plasma and increased urinary concentrations of the cationic amino acids. Histopathological assessment revealed loss of brush border and lipid vacuolation in the renal cortex of Slc7a7Lbu/Lbu mice, which combined with aminoaciduria suggests proximal tubular dysfunction. Micro-computed tomography of L4 vertebrae and skeletal radiographs showed delayed skeletal development and suggested decreased mineralization in Slc7a7Lbu/Lbu mice, respectively. In addition to delayed skeletal development and delayed development in the kidneys, the lungs and liver were observed based on histopathological assessment. Overall, our Slc7a7Lbu/Lbu mouse model on the F2 mixed background recapitulates multiple human LPI phenotypes and may be useful for future studies of LPI pathology.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Sistema de Transporte de Aminoácidos y+L/genética , Riñón/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico por imagen , Errores Innatos del Metabolismo de los Aminoácidos/patología , Sistema de Transporte de Aminoácidos y+L/deficiencia , Aminoácidos/genética , Animales , Modelos Animales de Enfermedad , Exones/genética , Humanos , Riñón/patología , Ratones , Ratones Noqueados , Fenotipo , Microtomografía por Rayos X
3.
Curr Protoc Mouse Biol ; 9(2): e63, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31195428

RESUMEN

Iodine-contrast micro-computed tomography (microCT) 3D imaging provides a non-destructive and high-throughput platform for studying mouse embryo and neonate development. Here we provide protocols on preparing mouse embryos and neonates between embryonic day 8.5 (E8.5) to postnatal day 4 (P4) for iodine-contrast microCT imaging. With the implementation of the STABILITY method to create a polymer-tissue hybrid structure, we have demonstrated that not only is soft tissue shrinkage minimized but also the minimum required time for soft tissue staining with iodine is decreased, especially for E18.5 to P4 samples. In addition, we also provide a protocol on using commercially available X-CLARITYTM hydrogel solution to create the similar polymer-tissue hybrid structure on delicate early post-implantation stage (E8.5 to E14.5) embryos. With its simple sample staining and mounting processes, this protocol is easy to adopt and implement for most of the commercially available, stand-alone microCT systems in order to study mouse development between early post-implantation to early postnatal stages. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
Medios de Contraste/uso terapéutico , Compuestos de Yodo/uso terapéutico , Ratones , Microtomografía por Rayos X/métodos , Animales , Animales Recién Nacidos , Embrión de Mamíferos , Microtomografía por Rayos X/instrumentación
4.
Am J Hum Genet ; 104(3): 422-438, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30773277

RESUMEN

SPONASTRIME dysplasia is an autosomal-recessive spondyloepimetaphyseal dysplasia characterized by spine (spondylar) abnormalities, midface hypoplasia with a depressed nasal bridge, metaphyseal striations, and disproportionate short stature. Scoliosis, coxa vara, childhood cataracts, short dental roots, and hypogammaglobulinemia have also been reported in this disorder. Although an autosomal-recessive inheritance pattern has been hypothesized, pathogenic variants in a specific gene have not been discovered in individuals with SPONASTRIME dysplasia. Here, we identified bi-allelic variants in TONSL, which encodes the Tonsoku-like DNA repair protein, in nine subjects (from eight families) with SPONASTRIME dysplasia, and four subjects (from three families) with short stature of varied severity and spondylometaphyseal dysplasia with or without immunologic and hematologic abnormalities, but no definitive metaphyseal striations at diagnosis. The finding of early embryonic lethality in a Tonsl-/- murine model and the discovery of reduced length, spinal abnormalities, reduced numbers of neutrophils, and early lethality in a tonsl-/- zebrafish model both support the hypomorphic nature of the identified TONSL variants. Moreover, functional studies revealed increased amounts of spontaneous replication fork stalling and chromosomal aberrations, as well as fewer camptothecin (CPT)-induced RAD51 foci in subject-derived cell lines. Importantly, these cellular defects were rescued upon re-expression of wild-type (WT) TONSL; this rescue is consistent with the hypothesis that hypomorphic TONSL variants are pathogenic. Overall, our studies in humans, mice, zebrafish, and subject-derived cell lines confirm that pathogenic variants in TONSL impair DNA replication and homologous recombination-dependent repair processes, and they lead to a spectrum of skeletal dysplasia phenotypes with numerous extra-skeletal manifestations.


Asunto(s)
Inestabilidad Cromosómica , Daño del ADN , Variación Genética , Anomalías Musculoesqueléticas/patología , FN-kappa B/genética , Osteocondrodisplasias/patología , Adolescente , Adulto , Alelos , Animales , Células Cultivadas , Niño , Preescolar , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Estudios de Asociación Genética , Humanos , Ratones , Ratones Noqueados , Anomalías Musculoesqueléticas/genética , Osteocondrodisplasias/genética , Secuenciación del Exoma , Adulto Joven , Pez Cebra
5.
Neural Dev ; 13(1): 23, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30219109

RESUMEN

BACKGROUND: Ex vivo, whole-mount explant culture of the rodent retina has proved to be a valuable approach for studying retinal development. In a limited number of recent studies, this method has been coupled to live fluorescent microscopy with the goal of directly observing dynamic cellular events. However, retinal tissue thickness imposes significant technical limitations. To obtain 3-dimensional images with high quality axial resolution, investigators are restricted to specific areas of the retina and require microscopes, such as 2-photon, with a higher level of depth penetrance. Here, we report a retinal live imaging method that is more amenable to a wider array of imaging systems and does not compromise resolution of retinal cross-sectional area. RESULTS: Mouse retinal slice cultures were prepared and standard, inverted confocal microscopy was used to generate movies with high quality resolution of retinal cross-sections. To illustrate the ability of this method to capture discrete, physiologically relevant events during retinal development, we imaged the dynamics of the Fucci cell cycle reporter in both wild type and Cyclin D1 mutant retinal progenitor cells (RPCs) undergoing interkinetic nuclear migration (INM). Like previously reported for the zebrafish, mouse RPCs in G1 phase migrated stochastically and exhibited overall basal drift during development. In contrast, mouse RPCs in G2 phase displayed directed, apical migration toward the ventricular zone prior to mitosis. We also determined that Cyclin D1 knockout RPCs in G2 exhibited a slower apical velocity as compared to wild type. These data are consistent with previous IdU/BrdU window labeling experiments on Cyclin D1 knockout RPCs indicating an elongated cell cycle. Finally, to illustrate the ability to monitor retinal neuron differentiation, we imaged early postnatal horizontal cells (HCs). Time lapse movies uncovered specific HC neurite dynamics consistent with previously published data showing an instructive role for transient vertical neurites in HC mosaic formation. CONCLUSIONS: We have detailed a straightforward method to image mouse retinal slice culture preparations that, due to its relative ease, extends live retinal imaging capabilities to a more diverse group of scientists. We have also shown that, by using a slice technique, we can achieve excellent lateral resolution, which is advantageous for capturing intracellular dynamics and overall cell movements during retinal development and differentiation.


Asunto(s)
Diagnóstico por Imagen/métodos , Retina/citología , Retina/diagnóstico por imagen , Retina/crecimiento & desarrollo , Factores de Edad , Animales , Animales Recién Nacidos , Calbindinas/metabolismo , Muerte Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Conexinas/genética , Conexinas/metabolismo , Ciclina D1/deficiencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Técnicas In Vitro , Ratones , Ratones Transgénicos , Componente 6 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Neurogénesis , Técnicas de Cultivo de Órganos , Factores de Tiempo
6.
Wiley Interdiscip Rev Dev Biol ; 5(2): 233-67, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26447401

RESUMEN

A central challenge in investigating biological phenomena is the development of techniques to modify genomic DNA with nucleotide precision that can be transmitted through the germ line. Recent years have brought a boon in these technologies, now collectively known as genome engineering. Defined genomic manipulations at the nucleotide level enable a variety of reverse engineering paradigms, providing new opportunities to interrogate diverse biological functions. These genetic modifications include controlled removal, insertion, and substitution of genetic fragments, both small and large. Small fragments up to a few kilobases (e.g., single nucleotide mutations, small deletions, or gene tagging at single or multiple gene loci) to large fragments up to megabase resolution can be manipulated at single loci to create deletions, duplications, inversions, or translocations of substantial sections of whole chromosome arms. A specialized substitution of chromosomal portions that presumably are functionally orthologous between different organisms through syntenic replacement, can provide proof of evolutionary conservation between regulatory sequences. Large transgenes containing endogenous or synthetic DNA can be integrated at defined genomic locations, permitting an alternative proof of evolutionary conservation, and sophisticated transgenes can be used to interrogate biological phenomena. Precision engineering can additionally be used to manipulate the genomes of organelles (e.g., mitochondria). Novel genome engineering paradigms are often accelerated in existing, easily genetically tractable model organisms, primarily because these paradigms can be integrated in a rigorous, existing technology foundation. The Drosophila melanogaster fly model is ideal for these types of studies. Due to its small genome size, having just four chromosomes, the vast amount of cutting-edge genetic technologies, and its short life-cycle and inexpensive maintenance requirements, the fly is exceptionally amenable to complex genetic analysis using advanced genome engineering. Thus, highly sophisticated methods developed in the fly model can be used in nearly any sequenced organism. Here, we summarize different ways to perform precise inheritable genome engineering using integrases, recombinases, and DNA nucleases in the D. melanogaster. For further resources related to this article, please visit the WIREs website.


Asunto(s)
Drosophila melanogaster/genética , Marcación de Gen/métodos , Ingeniería Genética/métodos , Genoma de los Insectos , Animales
7.
Nucleic Acids Res ; 42(10): e86, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24753411

RESUMEN

Regulation of messenger ribonucleic acid (mRNA) subcellular localization, stability and translation is a central aspect of gene expression. Much of this control is mediated via recognition of mRNA 3' untranslated regions (UTRs) by microRNAs (miRNAs) and RNA-binding proteins. The gold standard approach to assess the regulation imparted by a transcript's 3' UTR is to fuse the UTR to a reporter coding sequence and assess the relative expression of this reporter as compared to a control. Yet, transient transfection approaches or the use of highly active viral promoter elements may overwhelm a cell's post-transcriptional regulatory machinery in this context. To circumvent this issue, we have developed and validated a novel, scalable piggyBac-based vector for analysis of 3' UTR-mediated regulation in vitro and in vivo. The vector delivers three independent transcription units to the target genome--a selection cassette, a turboGFP control reporter and an experimental reporter expressed under the control of a 3' UTR of interest. The pBUTR (piggyBac-based 3' UnTranslated Region reporter) vector performs robustly as a siRNA/miRNA sensor, in established in vitro models of post-transcriptional regulation, and in both arrayed and pooled screening approaches. The vector is robustly expressed as a transgene during murine embryogenesis, highlighting its potential usefulness for revealing post-transcriptional regulation in an in vivo setting.


Asunto(s)
Regiones no Traducidas 3' , Elementos Transponibles de ADN , Regulación de la Expresión Génica , Vectores Genéticos , Animales , Línea Celular , Genes Reporteros , Humanos , Ratones , MicroARNs/metabolismo , Interferencia de ARN , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo
8.
Mech Dev ; 129(5-8): 98-108, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22677792

RESUMEN

Deregulation of the Hedgehog (Hh) signaling pathway is associated with the development of human cancer including medullobastoma and basal cell carcinoma. Loss of Patched or activation of Smoothened in mouse models increases the occurrence of tumors. Likewise, in a Drosophila eye model, deregulated Hedgehog signaling causes overgrowth of eye and head tissues. Surprisingly, we show that cells with deregulated Hh signaling do not or only little contribute to the tissue overgrowth. Instead, they become more sensitive to apoptosis and may eventually be eliminated. Nevertheless, these mutant cells increase proliferation in the adjacent wild-type tissue, i.e., in a non-cell autonomous manner. This non-cell autonomous effect is position-dependent and restricted to mutant cells in the anterior portion of the eye. We also observe precocious non-cell autonomous differentiation in genetic mosaics with deregulated Hh signaling. Together, these non-cell autonomous growth and differentiation phenotypes in the Drosophila eye model reveal another strategy by which oncogenes may generate a supportive micro-environment for tumor growth.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Ojo/citología , Ojo/crecimiento & desarrollo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Animales , Diferenciación Celular , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Ojo/metabolismo , Humanos , Cinesinas/genética , Ligandos , Ratones , Mosaicismo , Mutación/genética , Receptores de Superficie Celular/metabolismo
9.
Genesis ; 45(10): 607-17, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17941041

RESUMEN

Heart development is an evolutionarily conserved process. The cardiac organ of Drosophila melanogaster is the dorsal vessel, a linear contractile tissue with cellular and morphogenetic similarities to the primitive heart tube formed at an early stage of vertebrate heart formation. Abundant evidence shows comparable intercellular signaling pathways and transcription factor networks are utilized in Drosophila and vertebrates, to specify cardiac progenitor cells and instruct their differentiation and function in forming the mature heart. With this proven conservation in mind, we screened the second chromosome of Drosophila for genetic intervals that harbor additional loci required for normal dorsal vessel morphogenesis. Our studies identified numerous regions, that when deleted, culminated in dorsal vessels with abnormal cell numbers and/or structural properties. Certain of the deficiency intervals were further characterized to identify individual genes essential for proper cardiac organ formation. Our analyses identified eight genes of diverse functions that are needed for dorsal vessel development. Several of these sequences have known vertebrate homologues, further supporting a conserved genetic basis for heart formation in Drosophila and higher eukaryotes.


Asunto(s)
Cromosomas/genética , Drosophila/embriología , Drosophila/genética , Corazón/embriología , Morfogénesis/genética , Animales , Biomarcadores , Vasos Sanguíneos/embriología , Mapeo Cromosómico , Embrión no Mamífero , Genes de Insecto/fisiología , Pruebas Genéticas , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Mutación
10.
Development ; 132(18): 4165-78, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16123312

RESUMEN

The global cell movements that shape an embryo are driven by intricate changes to the cytoarchitecture of individual cells. In a developing embryo, these changes are controlled by patterning genes that confer cell identity. However, little is known about how patterning genes influence cytoarchitecture to drive changes in cell shape. In this paper, we analyze the function of the folded gastrulation gene (fog), a known target of the patterning gene twist. Our analysis of fog function therefore illuminates a molecular pathway spanning all the way from patterning gene to physical change in cell shape. We show that secretion of Fog protein is apically polarized, making this the earliest polarized component of a pathway that ultimately drives myosin to the apical side of the cell. We demonstrate that fog is both necessary and sufficient to drive apical myosin localization through a mechanism involving activation of myosin contractility with actin. We determine that this contractility driven form of localization involves RhoGEF2 and the downstream effector Rho kinase. This distinguishes apical myosin localization from basal myosin localization, which we find not to require actinomyosin contractility or FOG/RhoGEF2/Rho-kinase signaling. Furthermore, we demonstrate that once localized apically, myosin continues to contract. The force generated by continued myosin contraction is translated into a flattening and constriction of the cell surface through a tethering of the actinomyosin cytoskeleton to the apical adherens junctions. Our analysis of fog function therefore provides a direct link from patterning to cell shape change.


Asunto(s)
Tipificación del Cuerpo/fisiología , Forma de la Célula/fisiología , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Modelos Biológicos , Miosinas/metabolismo , Transducción de Señal/fisiología , Proteína 1 Relacionada con Twist/metabolismo , Actinas/metabolismo , Uniones Adherentes/fisiología , Animales , Proteínas de Ciclo Celular , Polaridad Celular/fisiología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Embrión no Mamífero/fisiología , Proteínas Fluorescentes Verdes , Miosinas/fisiología , Proteína 1 Relacionada con Twist/genética , Proteínas de Unión al GTP rho/metabolismo
11.
Dev Biol ; 281(2): 270-85, 2005 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15893978

RESUMEN

The adult structures of Drosophila melanogaster are derived from larval imaginal discs, which originate as clusters of cells within the embryonic ectoderm. The genital imaginal disc is composed of three primordia (female genital, male genital, and anal primordia) that originate from the embryonic tail segments A8, A9, and A10, respectively, and produce the sexually dimorphic genitalia and analia. We show that the genital disc precursor cells (GDPCs) are first detectable during mid-embryogenesis as a 22-cell cluster in the ventral epidermis. Analysis of mutant and double mutant phenotypes of embryonic patterning genes in the GDPCs, together with their expression patterns in these cells, revealed the following with respect to the origins and specification of the GDPCs. The allocation of the GDPCs from the ventral epidermis requires the function of ventral patterning genes, including the EGF receptor and the spitz group of genes. The ventral localization of the GDPCs is further restricted by the action of dorsal patterning genes. Along the anterior-posterior axis, several segment polarity genes (wingless, engrailed, hedgehog, and patched) are required for the proper allocation of the GDPCs. These segment polarity genes are expressed in some, but not all of the GDPCs, indicating that anterior and posterior compartments are not fully established in the GDPCs. In addition, we found that the three primordia of the larval genital disc have already been specified in the GDPCs by the coordinated actions of the homeotic (Hox) genes, abdominal-A, Abdominal-B, and caudal. By identifying how these different patterning networks regulate the allocation and primordial organization of the 22 embryonic precursors of the compound genital disc, we demonstrate that at least some of the organization of the larval disc originates as positional information in the embryo, thus providing a context for further studies on the development of the genital disc.


Asunto(s)
Linaje de la Célula , Drosophila melanogaster/embriología , Células Madre/citología , Animales , Tipificación del Cuerpo/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Receptores ErbB/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Genitales/citología , Genitales/embriología , Proteínas de Homeodominio/fisiología , Masculino , Proteínas Nucleares/fisiología , Diferenciación Sexual , Factores de Transcripción/fisiología
12.
Trends Genet ; 18(10): 510-6, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12350340

RESUMEN

There has recently been a revolution in our understanding of how the Drosophila sex-determination hierarchy generates somatic sexual dimorphism. Most significantly, the sex hierarchy has been shown to modulate the activities of well-known signaling molecules (FGF, Wnt and TGF beta proteins) and transcription factors (BAB and DAC) to direct various sex-specific aspects of growth and differentiation. As some of the genes encoding these proteins are also the targets of Hox gene action, these and other findings are revealing the levels at which the sex determination and Hox patterning pathways are integrated to control growth, morphogenesis and differentiation.


Asunto(s)
Drosophila/crecimiento & desarrollo , Drosophila/genética , Animales , Tipificación del Cuerpo/genética , Femenino , Genes de Insecto , Genitales/crecimiento & desarrollo , Masculino , Caracteres Sexuales , Procesos de Determinación del Sexo , Diferenciación Sexual/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...