Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Front Neurosci ; 17: 1205819, 2023.
Article En | MEDLINE | ID: mdl-37404461

Introduction: Preterm infants have increased risk of impaired neurodevelopment to which reduced systemic levels of insulin-like growth factor 1 (IGF-1) in the weeks after birth may play a role. Hence, we hypothesized that postnatal IGF-1 supplementation would improve brain development in preterm pigs, used as a model for preterm infants. Methods: Preterm pigs delivered by cesarean section received recombinant human IGF-1/IGF binding protein-3 complex (rhIGF-1/rhIGFBP-3, 2.25 mg/kg/day) or vehicle from birth to postnatal day 19. Motor function and cognition were assessed by monitoring of in-cage and open field activities, balance beam test, gait parameters, novel object recognition and operant conditioning tests. Collected brains were subject to magnetic resonance imaging (MRI), immunohistochemistry, gene expression analyses and protein synthesis measurements. Results: The IGF-1 treatment increased cerebellar protein synthesis rates (both in vivo and ex vivo). Performance in the balance beam test was improved by IGF-1 but not in other neurofunctional tests. The treatment decreased total and relative caudate nucleus weights, without any effects to total brain weight or grey/white matter volumes. Supplementation with IGF-1 reduced myelination in caudate nucleus, cerebellum, and white matter regions and decreased hilar synapse formation, without effects to oligodendrocyte maturation or neuron differentiation. Gene expression analyses indicated enhanced maturation of the GABAergic system in the caudate nucleus (decreased NKCC1:KCC2 ratio) with limited effects in cerebellum or hippocampus. Conclusion: Supplemental IGF-1 during the first three weeks after preterm birth may support motor function by enhancing GABAergic maturation in the caudate nucleus, despite reduced myelination. Supplemental IGF-1 may support postnatal brain development in preterm infants, but more studies are required to identify optimal treatment regimens for subgroups of very or extremely preterm infants.

2.
eNeuro ; 10(4)2023 04.
Article En | MEDLINE | ID: mdl-36973010

Very preterm infants show low levels of insulin-like growth factor-1 (IGF-1), which is associated with postnatal growth restriction and poor neurologic outcomes. It remains unknown whether supplemental IGF-1 may stimulate neurodevelopment in preterm neonates. Using cesarean-delivered preterm pigs as a model of preterm infants, we investigated the effects of supplemental IGF-1 on motor function and on regional and cellular brain development. Pigs were treated with 2.25 mg/kg/d recombinant human IGF-1/IGF binding protein-3 complex from birth until day 5 or 9 before the collection of brain samples for quantitative immunohistochemistry (IHC), RNA sequencing, and quantitative PCR analyses. Brain protein synthesis was measured using in vivo labeling with [2H5] phenylalanine. We showed that the IGF-1 receptor was widely distributed in the brain and largely coexisted with immature neurons. Region-specific quantification of IHC labeling showed that IGF-1 treatment promoted neuronal differentiation, increased subcortical myelination, and attenuated synaptogenesis in a region-dependent and time-dependent manner. The expression levels of genes involved in neuronal and oligodendrocyte maturation, and angiogenic and transport functions were altered, reflecting enhanced brain maturation in response to IGF-1 treatment. Cerebellar protein synthesis was increased by 19% at day 5 and 14% at day 9 after IGF-1 treatment. Treatment had no effect on Iba1+ microglia or regional brain weights and did not affect motor development or the expression of genes related to IGF-1 signaling. In conclusion, the data show that supplemental IGF-1 promotes brain maturation in newborn preterm pigs. The results provide further support for IGF-1 supplementation therapy in the early postnatal period in preterm infants.


Infant, Premature , Insulin-Like Growth Factor I , Pregnancy , Female , Animals , Swine , Infant, Newborn , Humans , Insulin-Like Growth Factor I/pharmacology , Insulin-Like Growth Factor I/metabolism , Brain/metabolism , Cerebellum/metabolism , Dietary Supplements
3.
Sci Rep ; 12(1): 3303, 2022 02 28.
Article En | MEDLINE | ID: mdl-35228576

Breast milk has neurodevelopmental advantages compared to infant formula, especially in low-birth-weight infants, which may in part relate to the fat source. This study compared neurodevelopmental outcomes in three-day-old normal birth weight (NBW) and intrauterine growth restricted (IUGR) piglets fed a formula diet with either vegetable oil (VEG) or bovine milk fat sources (MILK) for three weeks in a 2 × 2 factorial design. Behavioural tests, lipidomics, MRI and RNA sequencing analyses of plasma and brain tissue were conducted. The absolute levels of 82% and 11% of lipid molecules were different between dietary groups in plasma and hippocampus, respectively. Of the lipid molecules with differential abundance in the hippocampus, the majority were upregulated in MILK versus VEG, and they mainly belonged to the group of glycerophospholipids. Lower absolute brain weights, absolute grey and white matter volumes and behaviour and motor function scores, and higher relative total brain weights were present in IUGR compared to NBW with minor influence of diet. Cognitive function and cerebellar gene expression profiles were similar for dietary and weight groups, and overall only minor interactive effects between diet and birth weight were observed. Overall, we show that the dietary fat source influences the plasma and to a lesser degree the hippocampal lipidome and is unable to improve on IUGR-induced brain structural and functional impairments.


Lipidomics , Vegetables , Animals , Birth Weight , Brain/diagnostic imaging , Brain/metabolism , Diet , Dietary Fats , Fetal Growth Retardation/metabolism , Humans , Swine
4.
J Neuroinflammation ; 15(1): 180, 2018 Jun 09.
Article En | MEDLINE | ID: mdl-29885660

BACKGROUND: Necrotizing enterocolitis (NEC) is an acute gut inflammatory disorder that occurs in preterm infants in the first weeks after birth. Infants surviving NEC often show impaired neurodevelopment. The mechanisms linking NEC lesions with later neurodevelopment are poorly understood but may include proinflammatory signaling in the immature brain. Using preterm pigs as a model for preterm infants, we hypothesized that severe intestinal NEC lesions are associated with acute effects on the developing hippocampus. METHODS: Cesarean-delivered preterm pigs (n = 117) were reared for 8 days and spontaneously developed variable severity of NEC lesions. Neonatal arousal, physical activity, and in vitro neuritogenic effects of cerebrospinal fluid (CSF) were investigated in pigs showing NEC lesions in the colon (Co-NEC) or in the small intestine (Si-NEC). Hippocampal transcriptome analysis and qPCR were used to assess gene expressions and their relation to biological processes, including neuroinflammation, and neural plasticity. Microglia activation was quantified by stereology. The neuritogenic response to selected proteins was investigated in primary cultures of hippocampal neurons. RESULTS: NEC development rapidly reduced the physical activity of pigs, especially when lesions occurred in the small intestine. Si-NEC and Co-NEC were associated with 27 and 12 hippocampal differentially expressed genes (DEGs), respectively. These included genes related to neuroinflammation (i.e., S100A8, S100A9, IL8, IL6, MMP8, SAA, TAGLN2) and hypoxia (i.e., PDK4, IER3, TXNIP, AGER), and they were all upregulated in Si-NEC pigs. Genes related to protection against oxidative stress (HBB, ALAS2) and oligodendrocytes (OPALIN) were downregulated in Si-NEC pigs. CSF collected from NEC pigs promoted neurite outgrowth in vitro, and the S100A9 and S100A8/S100A9 proteins may mediate the neuritogenic effects of NEC-related CSF on hippocampal neurons. NEC lesions did not affect total microglial cell number but markedly increased the proportion of Iba1-positive amoeboid microglial cells. CONCLUSIONS: NEC lesions, especially when present in the small intestine, are associated with changes to hippocampal gene expression that potentially mediate neuroinflammation and disturbed neural circuit formation via enhanced neuronal differentiation. Early brain-protective interventions may be critical for preterm infants affected by intestinal NEC lesions to reduce their later neurological dysfunctions.


Brain/physiopathology , Cytokines/metabolism , Enterocolitis, Necrotizing/etiology , Premature Birth/pathology , Premature Birth/physiopathology , Animals , Brain/pathology , Cerebrospinal Fluid/metabolism , DNA-Binding Proteins/metabolism , Gastrointestinal Tract/metabolism , Hypoxia/metabolism , Inflammation/etiology , Microglia/metabolism , Microglia/pathology , Nerve Tissue Proteins/metabolism , Neuronal Outgrowth , Physical Conditioning, Animal , S100 Proteins/metabolism , Swine , Time Factors , Transcriptome/physiology , Vascular Endothelial Growth Factor A/metabolism
...