Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 290(23): 5581-5604, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37665644

RESUMEN

Functional networks in cells are created by physical, genetic, and regulatory interactions. Mapping them and annotating their functions by available methods remains a challenge. We use affinity purification mass spectrometry (AP-MS) coupled with SLiMFinder to discern such a network involving 26S proteasome non-ATPase regulatory subunit 9 (PSMD9), a chaperone of proteasome assembly. Approximately 20% of proteins within the PSMD9 interactome carry a short linear motif (SLiM) of the type 'EXKK'. The binding of purified PSMD9 with the peptide sequence ERKK, proteins heterogeneous nuclear ribonucleoproteins A2/B1 (hnRNPA2B1; containing ERKK), and peroxiredoxin-6 (PRDX6; containing EAKK) provided proof of principle for this motif-driven network. The EXKK motif in the peptide primarily interacts with the coiled-coil N domain of PSMD9, a unique interaction not reported for any coiled-coil domain. PSMD9 knockout (KO) HEK293 cells experience endoplasmic reticulum (ER) stress and respond by increasing the unfolded protein response (UPR) and reducing the formation of aggresomes and lipid droplets. Trans-expression of PSMD9 in the KO cells rescues lipid droplet formation. Overexpression of PSMD9 in HEK293 cells results in reduced UPR, and increased lipid droplet and aggresome formation. The outcome argues for the prominent role of PSMD9 in maintaining proteostasis. Probable mechanisms involve the binding of PSMD9 to binding immunoglobulin protein (BIP/GRP78; containing EDKK), an endoplasmic reticulum chaperone and key regulator of the UPR, and fatty acid synthase (FASN; containing ELKK), involved in fatty acid synthesis/lipid biogenesis. We propose that PSMD9 acts as a buffer in the cellular milieu by moderating the UPR and enhancing aggresome formation to reduce stress-induced proteotoxicity. Akin to waves created in ponds that perpetuate to a distance, perturbing the levels of PSMD9 would cause ripples down the networks, affecting final reactions in the pathway, one of which is altered proteostasis.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteostasis , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteostasis/genética , Células HEK293 , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico/genética , Chaperón BiP del Retículo Endoplásmico , Proteínas Portadoras/genética , Péptidos/genética
2.
Biochem Biophys Res Commun ; 563: 105-112, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34077860

RESUMEN

Capitalizing on an unexpected observation that multiple free ribosomal proteins co-purify/pull-down with PSMD9, we report here for the first time that PSMD9 is necessary to maintain the morphology and integrity of the nucleolus. As seen by NPM1 immunofluorescence and electron microscopy, the nucleolar structure is clearly disrupted in PSMD9 null MCF7 breast cancer cells. The resultant stress is pronounced leading to the accumulation of WT p53 and slow growth. A dual insult with Actinomycin D exasperates the nucleolar stress in these cells which fail to recover in stipulated time. This double insult in the WT cells enhances the interaction of PSMD9 with ribosomal subunits. Our data also reveals that in PSMD9 null cells, ribosomal proteins RPS25 and RPL15 fail to localise in the nucleolus. We speculate that the interaction of PSMD9 with multiple free ribosome subunits has at least two important implications: a) PSMD9 plays a role in trafficking of ribosomal proteins into the nucleolus, therefore contributing to the maintenance of structural and morphological organization of the membrane-less nucleolar compartment; b) under conditions that induce nucleolar stress, PSMD9-Ribosomal Protein interaction protects WT MCF7 breast cancer cells from slow growth and eventual death. This possibility renders the domains of PSMD9 to be attractive drug targets in the context of cancer and other multiple ribosome-associated disorders.


Asunto(s)
Nucléolo Celular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células Cultivadas , Humanos , Nucleofosmina , Complejo de la Endopetidasa Proteasomal/deficiencia
3.
Oncotarget ; 9(2): 2678-2696, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-29416801

RESUMEN

Invasive ductal carcinoma (IDC) is the most common type of breast cancer and the leading cause of breast cancer related mortality. In the present study, metabolomic profiles of 72 tissue samples and 146 serum samples were analysed using targeted liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM/MS) and untargeted gas chromatography mass spectrometry (GC-MS) approaches. Combination of univariate and multivariate statistical treatment identified significant alterations of 42 and 32 metabolites in tissue and serum samples of IDC, respectively when compared to control. Some of the metabolite changes from tissue were also reflected in serum, indicating a bi-directional interaction of metabolites in IDC. Additionally, 8 tissue metabolites and 9 serum metabolites showed progressive change from control to benign to IDC suggesting their possible role in malignant transformation. We have identified a panel of three metabolites viz. tryptophan, tyrosine, and creatine in tissue and serum, which could be useful in screening of IDC subjects from both control and benign. The metabolomic alterations in IDC showed perturbations in purine and pyrimidine metabolism, amino sugar metabolism, amino acid metabolism, fatty acid biosynthesis etc. Comprehensively, this study provides valuable insights into metabolic adaptations of IDC, which can help to identify diagnostic markers as well as potential therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...