Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 16251, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758785

RESUMEN

The urban community faces a significant obstacle in effectively utilising Earth Observation (EO) intelligence, particularly the Copernicus EO program of the European Union, to address the multifaceted aspects of urban sustainability and bolster urban resilience in the face of climate change challenges. In this context, here we present the efforts of the CURE project, which received funding under the European Union's Horizon 2020 Research and Innovation Framework Programme, to leverage the Copernicus Core Services (CCS) in supporting urban resilience. CURE provides spatially disaggregated environmental intelligence at a local scale, demonstrating that CCS can facilitate urban planning and management strategies to improve the resilience of cities. With a strong emphasis on stakeholder engagement, CURE has identified eleven cross-cutting applications between CCS that correspond to the major dimensions of urban sustainability and align with user needs. These applications have been integrated into a cloud-based platform known as DIAS (Data and Information Access Services), which is capable of delivering reliable, usable and relevant intelligence to support the development of downstream services towards enhancing resilience planning of cities throughout Europe.

2.
Sci Total Environ ; 830: 154662, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35318060

RESUMEN

The measures taken to contain the spread of COVID-19 in 2020 included restrictions of people's mobility and reductions in economic activities. These drastic changes in daily life, enforced through national lockdowns, led to abrupt reductions of anthropogenic CO2 emissions in urbanized areas all over the world. To examine the effect of social restrictions on local emissions of CO2, we analysed district level CO2 fluxes measured by the eddy-covariance technique from 13 stations in 11 European cities. The data span several years before the pandemic until October 2020 (six months after the pandemic began in Europe). All sites showed a reduction in CO2 emissions during the national lockdowns. The magnitude of these reductions varies in time and space, from city to city as well as between different areas of the same city. We found that, during the first lockdowns, urban CO2 emissions were cut with respect to the same period in previous years by 5% to 87% across the analysed districts, mainly as a result of limitations on mobility. However, as the restrictions were lifted in the following months, emissions quickly rebounded to their pre-COVID levels in the majority of sites.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , COVID-19/epidemiología , Dióxido de Carbono/análisis , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , SARS-CoV-2
3.
Sci Total Environ ; 651(Pt 2): 2432-2443, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30336433

RESUMEN

For many years, Protected Areas (PA) have been an important tool for conserving nature. Recently, also societal aspects have been introduced into PA management via the introduction of the Ecosystem Services (ES) approach. This review discusses the historical background of PAs, PA management, and the ES approach. We then discuss the relevance and applicability of the ES approach for PA management, including the different definitions of ES, different classification methods, and the ways in which ES are measured. We conclude that there are still major challenges ahead in using the ES approach in PA management and so recommendations are given on the way in which the ES approach should be integrated into PA management.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema
4.
Environ Int ; 121(Pt 1): 57-70, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30179765

RESUMEN

Air quality monitoring across Europe is mainly based on in situ ground stations, which are too sparse to accurately assess the exposure effects of air pollution for the entire continent. The demand for precise predictive models that estimate gridded geophysical parameters of ambient air at high spatial resolution has rapidly grown. Here, we investigate the potential of satellite-derived products to improve particulate matter (PM) estimates. Bayesian geostatistical models addressing confounding between the spatial distribution of pollutants and remotely sensed predictors were developed to estimate yearly averages of both, fine (PM2.5) and coarse (PM10) surface PM concentrations, at 1 km2 spatial resolution over 46 European countries. Model outcomes were compared to geostatistical, geographically weighted and land-use regression formulations. Rigorous model selection identified the Earth observation data which contribute most to pollutants' estimation. Geostatistical models outperformed the predictive ability of the frequently employed land-use regression. The resulting estimates of PM10 and PM2.5, which represent the main air quality indicators for the urban Sustainable Development Goal, indicate that in 2016, 66.2% of the European population was breathing air above the WHO air quality guidelines thresholds. Our estimates are readily available to policy makers and scientists assessing the effects of long-term exposure to pollution on human and ecosystem health.


Asunto(s)
Contaminantes Atmosféricos/análisis , Teorema de Bayes , Monitoreo del Ambiente/métodos , Modelos Teóricos , Material Particulado/análisis , Tecnología de Sensores Remotos , Contaminación del Aire/análisis , Monitoreo del Ambiente/estadística & datos numéricos , Europa (Continente)
5.
Sci Rep ; 8(1): 11498, 2018 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-30065389

RESUMEN

One important challenge facing the urbanization and global environmental change community is to understand the relation between urban form, energy use and carbon emissions. Missing from the current literature are scientific assessments that evaluate the impacts of different urban spatial units on energy fluxes; yet, this type of analysis is needed by urban planners, who recognize that local scale zoning affects energy consumption and local climate. Satellite-based estimation of urban energy fluxes at neighbourhood scale is still a challenge. Here we show the potential of the current satellite missions to retrieve urban energy budget fluxes, supported by meteorological observations and evaluated by direct flux measurements. We found an agreement within 5% between satellite and in-situ derived net all-wave radiation; and identified that wall facet fraction and urban materials type are the most important parameters for estimating heat storage of the urban canopy. The satellite approaches were found to underestimate measured turbulent heat fluxes, with sensible heat flux being most sensitive to surface temperature variation (-64.1, +69.3 W m-2 for ±2 K perturbation).  They also underestimate anthropogenic heat fluxes. However, reasonable spatial patterns are obtained for the latter allowing hot-spots to be identified, therefore supporting both urban planning and urban climate modelling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA