Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Biodes Res ; 6: 0031, 2024.
Article En | MEDLINE | ID: mdl-38572349

Protein engineering aimed at increasing temperature tolerance through iterative mutagenesis and high-throughput screening is often labor-intensive. Here, we developed a deep evolution (DeepEvo) strategy to engineer protein high-temperature tolerance by generating and selecting functional sequences using deep learning models. Drawing inspiration from the concept of evolution, we constructed a high-temperature tolerance selector based on a protein language model, acting as selective pressure in the high-dimensional latent spaces of protein sequences to enrich those with high-temperature tolerance. Simultaneously, we developed a variant generator using a generative adversarial network to produce protein sequence variants containing the desired function. Afterward, the iterative process involving the generator and selector was executed to accumulate high-temperature tolerance traits. We experimentally tested this approach on the model protein glyceraldehyde 3-phosphate dehydrogenase, obtaining 8 variants with high-temperature tolerance from just 30 generated sequences, achieving a success rate of over 26%, demonstrating the high efficiency of DeepEvo in engineering protein high-temperature tolerance.

2.
PLoS Biol ; 21(9): e3002285, 2023 09.
Article En | MEDLINE | ID: mdl-37733785

The canonical glycolysis pathway is responsible for converting glucose into 2 molecules of acetyl-coenzyme A (acetyl-CoA) through a cascade of 11 biochemical reactions. Here, we have designed and constructed an artificial phosphoketolase (APK) pathway, which consists of only 3 types of biochemical reactions. The core enzyme in this pathway is phosphoketolase, while phosphatase and isomerase act as auxiliary enzymes. The APK pathway has the potential to achieve a 100% carbon yield to acetyl-CoA from any monosaccharide by integrating a one-carbon condensation reaction. We tested the APK pathway in vitro, demonstrating that it could efficiently catabolize typical C1-C6 carbohydrates to acetyl-CoA with yields ranging from 83% to 95%. Furthermore, we engineered Escherichia coli stain capable of growth utilizing APK pathway when glycerol act as a carbon source. This novel catabolic pathway holds promising route for future biomanufacturing and offering a stoichiometric production platform using multiple carbon sources.


Aldehyde-Lyases , Carbon , Acetyl Coenzyme A , Carbon/metabolism , Aldehyde-Lyases/genetics , Aldehyde-Lyases/metabolism , Glucose/metabolism , Metabolic Engineering
3.
Synth Syst Biotechnol ; 8(3): 462-468, 2023 Sep.
Article En | MEDLINE | ID: mdl-37692203

Starch, a semi-crystalline energy storage form primarily found in plant plastids plays a crucial role in various food or no-food applications. Despite the starch biosynthetic pathway's main enzymes have been characterized, their origin and evolution remained a subject of debate. In this study, we conducted the comprehensive phylogenetic and structural analysis of three types of starch biosynthetic enzymes: starch synthase (SS), starch branching enzyme (SBE) and isoamylase-type debranching enzyme (ISA) from 51,151 annotated genomes. Our findings provide valuable insights into the possible scenario for the origin and evolution of the starch biosynthetic pathway. Initially, the ancestor of SBE can be traced back to an unidentified bacterium that existed before the formation of the last eukaryotic common ancestor (LECA) via horizontal gene transfer (HGT). This transfer event likely provided the eukaryote ancestor with the ability to synthesize glycogen. Furthermore, during the emergence of Archaeplastida, one clade of SS was transferred from Deltaproteobacteria by HGT, while ISA and the other clade of SS originated from Chlamydiae through endosymbiosis gene transfer (EGT). Both these transfer events collectively contributed to the establishment of the original starch biosynthetic pathway. Subsequently, after the divergence of Viridiplantae from Rhodophyta, all three enzymes underwent multiple duplications and N-terminus extension domain modifications, resulting in the formation of functionally specialized isoforms and ultimately leading to the complete starch biosynthetic pathway. By shedding light on the evolutionary origins of key enzymes involved in the starch biosynthetic pathway, this study provides important insights into the evolutionary events of plants.

5.
Science ; 373(6562): 1523-1527, 2021 Sep 24.
Article En | MEDLINE | ID: mdl-34554807

Starches, a storage form of carbohydrates, are a major source of calories in the human diet and a primary feedstock for bioindustry. We report a chemical-biochemical hybrid pathway for starch synthesis from carbon dioxide (CO2) and hydrogen in a cell-free system. The artificial starch anabolic pathway (ASAP), consisting of 11 core reactions, was drafted by computational pathway design, established through modular assembly and substitution, and optimized by protein engineering of three bottleneck-associated enzymes. In a chemoenzymatic system with spatial and temporal segregation, ASAP, driven by hydrogen, converts CO2 to starch at a rate of 22 nanomoles of CO2 per minute per milligram of total catalyst, an ~8.5-fold higher rate than starch synthesis in maize. This approach opens the way toward future chemo-biohybrid starch synthesis from CO2.

6.
Mol Plant ; 14(7): 1199-1209, 2021 07 05.
Article En | MEDLINE | ID: mdl-33951484

Taxus, commonly known as yew, is a well-known gymnosperm with great ornamental and medicinal value. In this study, by assembling a chromosome-level genome of the Himalayan yew (Taxus wallichiana) with 10.9 Gb in 12 chromosomes, we revealed that tandem duplication acts as the driving force of gene family evolution in the yew genome, resulting in the main genes for paclitaxel biosynthesis, i.e. those encoding the taxadiene synthase, P450s, and transferases, being clustered on the same chromosome. The tandem duplication may also provide genetic resources for the nature to sculpt the core structure of taxoids at different positions and subsequently establish the complex pathway of paclitaxel by neofunctionalization. Furthermore, we confirmed that there are two genes in the cluster encoding isoenzymes of a known enzyme in the paclitaxel biosynthetic pathway. The reference genome of the Himalayan yew will serve as a platform for decoding the complete biosynthetic pathway of paclitaxel and understanding the chemodiversity of taxoids in gymnosperms.


Genome, Plant , Paclitaxel/biosynthesis , Taxus/genetics , Chromosomes, Plant , Evolution, Molecular , Gene Duplication , Taxoids , Taxus/metabolism , Whole Genome Sequencing
7.
Synth Syst Biotechnol ; 6(2): 102-109, 2021 Jun.
Article En | MEDLINE | ID: mdl-33997360

Plant cytochrome P450s play key roles in the diversification and functional modification of plant natural products. Although over 200,000 plant P450 gene sequences have been recorded, only seven crystalized P450 genes severely hampered the functional characterization, gene mining and engineering of important P450s. Here, we combined Rosetta homologous modeling and MD-based refinement to construct a high-resolution P450 structure prediction process (PCPCM), which was applied to 181 plant P450s with identified functions. Furthermore, we constructed a ligand docking process (PCPLD) that can be applied for plant P450s virtual screening. 10 examples of virtual screening indicated the process can reduce about 80% screening space for next experimental verification. Finally, we constructed a plant P450 database (PCPD: http://p450.biodesign.ac.cn/), which includes the sequences, structures and functions of the 181 plant P450s, and a web service based on PCPCM and PCPLD. Our study not only developed methods for the P450-specific structure analysis, but also introduced a universal approach that can assist the mining and functional analysis of P450 enzymes.

8.
MAbs ; 12(1): 1725365, 2020.
Article En | MEDLINE | ID: mdl-32054416

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4, CD152) is a receptor on T cells that inhibits the cell's functions. Blocking CTLA-4 with an antibody has proven effective for the treatment of cancer patients. Anti-CTLA-4 antibodies currently approved for clinical use can bind to human CTLA-4, but do not cross-react to murine CTLA-4. Here, we report the generation and characterization of a functional humanized antibody, mAb146, against both human and murine CTLA-4. Alanine scanning of CTLA-4 using mammalian cell expression cassette identified the unique epitopes of this novel antibody. In addition to the amino acid residues interacting with ligands CD80 and CD86, an N-glycosylation site on N110, conserved in CTLA-4 of human, monkey, and mouse, was identified as the specific epitope that might contribute to the cross-species binding and function of this antibody. This finding may also contribute to the understanding of the glycosylation of CTLA-4 and its related biologic function. In addition to facilitating preclinical development of anti-CTLA-4 antibodies, mAb146 may be useful as a therapeutic agent.


Antibodies, Monoclonal/immunology , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/chemistry , Epitopes/chemistry , Epitopes/immunology , Animals , Cross Reactions , Glycosylation , Humans , Mice
9.
J Chem Inf Model ; 58(2): 430-442, 2018 02 26.
Article En | MEDLINE | ID: mdl-29314837

To construct backbone structures of high designability is a primary aspect of computational protein design. We report here a side chain-independent statistical energy that aims at realistic modeling of through-space packing of polypeptide backbones. To mitigate the lack of explicit amino acid side chains, the model treats the interbackbone site packing as being dependent on peptide local conformation. In addition, new variables suitable for statistical analysis, one for relative orientation and another for distance, have been introduced to represent the intersite geometry based on the asymmetrical tetrahedron organization of distinct chemical groups surrounding the Cα-carbon atoms. The resulting tetrahedron-based backbone statistical energy (tetraBASE) model has been used to optimize the tertiary organizations of secondary structure elements (SSEs) of designated types with Monte Caro simulated annealing, starting from artificial initial configurations. The tetraBASE minimum energy structures can reproduce SSE packing frequently observed in native proteins with atomic root-mean-square deviations of 1-2 Å. The model has also been tested by examining the stability of native SSE arrangements under tetraBASE. The results suggest that tetraBASE model can be used to effectively represent interbackbone packing when designing backbone structures without explicitly knowing side chain types.


Computer Simulation , Proteins/chemistry , Algorithms , Databases, Protein , Protein Structure, Secondary , Thermodynamics
10.
Nat Methods ; 14(7): 720-728, 2017 Jul.
Article En | MEDLINE | ID: mdl-28581494

Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is essential for biosynthetic reactions and antioxidant functions; however, detection of NADPH metabolism in living cells remains technically challenging. We develop and characterize ratiometric, pH-resistant, genetically encoded fluorescent indicators for NADPH (iNap sensors) with various affinities and wide dynamic range. iNap sensors enabled quantification of cytosolic and mitochondrial NADPH pools that are controlled by cytosolic NAD+ kinase levels and revealed cellular NADPH dynamics under oxidative stress depending on glucose availability. We found that mammalian cells have a strong tendency to maintain physiological NADPH homeostasis, which is regulated by glucose-6-phosphate dehydrogenase and AMP kinase. Moreover, using the iNap sensors we monitor NADPH fluctuations during the activation of macrophage cells or wound response in vivo. These data demonstrate that the iNap sensors will be valuable tools for monitoring NADPH dynamics in live cells and gaining new insights into cell metabolism.


Gene Expression Regulation/physiology , Luminescent Proteins/metabolism , NADP/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Cell Survival , Glucose , Homeostasis , Humans , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Mice , Models, Molecular , Oxidative Stress , Protein Binding , Protein Conformation , Protein Domains , Protein Engineering
11.
Nat Commun ; 7: 11655, 2016 05 27.
Article En | MEDLINE | ID: mdl-27229179

The ataxia-telangiectasia mutated (ATM) protein is an apical kinase that orchestrates the multifaceted DNA-damage response. Normally, ATM kinase is in an inactive, homodimer form and is transformed into monomers upon activation. Besides a conserved kinase domain at the C terminus, ATM contains three other structural modules, referred to as FAT, FATC and N-terminal helical solenoid. Here we report the first cryo-EM structure of ATM kinase, which is an intact homodimeric ATM/Tel1 from Schizosaccharomyces pombe. We show that two monomers directly contact head-to-head through the FAT and kinase domains. The tandem N-terminal helical solenoid tightly packs against the FAT and kinase domains. The structure suggests that ATM/Tel1 dimer interface and the consecutive HEAT repeats inhibit the binding of kinase substrates and regulators by steric hindrance. Our study provides a structural framework for understanding the mechanisms of ATM/Tel1 regulation as well as the development of new therapeutic agents.


Ataxia Telangiectasia Mutated Proteins/chemistry , Protein Conformation , Protein Multimerization , Protein Serine-Threonine Kinases/chemistry , Schizosaccharomyces pombe Proteins/chemistry , Amino Acid Sequence , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Binding Sites/genetics , Cryoelectron Microscopy , Models, Molecular , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Sequence Homology, Amino Acid
...