Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Nano Lett ; 24(28): 8502-8509, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38949570

RESUMEN

N2O is a dominant atmosphere pollutant, causing ozone depletion and global warming. Currently, electrochemical reduction of N2O has gained increasing attention to remove N2O, but its product is worthless N2. Here, we propose a direct eight-electron (8e) pathway to electrochemically convert N2O into NH3. As a proof of concept, using density functional theory calculation, an Fe2 double-atom catalyst (DAC) anchored by N-doped porous graphene (Fe2@NG) was screened out to be the most active and selective catalyst for N2O electroreduction toward NH3 via the novel 8e pathway, which benefits from the unique bent N2O adsorption configuration. Guided by theoretical prediction, Fe2@NG DAC was fabricated experimentally, and it can achieve a high N2O-to-NH3 Faradaic efficiency of 77.8% with a large NH3 yield rate of 2.9 mg h-1 cm-2 at -0.6 V vs RHE in a neutral electrolyte. Our study offers a feasible strategy to synthesize NH3 from pollutant N2O with simultaneous N2O removal.

2.
Adv Mater ; 36(30): e2402160, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876146

RESUMEN

Urea electrosynthesis from co-electrolysis of NO3 - and CO2 (UENC) offers a promising technology for achieving sustainable and efficient urea production. Herein, a diatomic alloy catalyst (CuPd1Rh1-DAA), with mutually isolated Pd and Rh atoms alloyed on Cu substrate, is theoretically designed and experimentally confirmed to be a highly active and selective UENC catalyst. Combining theoretical computations and operando spectroscopic characterizations reveals the synergistic effect of Pd1-Cu and Rh1-Cu active sites to promote the UENC via a tandem catalysis mechanism, where Pd1-Cu site triggers the early C-N coupling and promotes *CO2NO2-to-*CO2NH steps, while Rh1-Cu site facilitates the subsequent protonation step of *CO2NH2 to *COOHNH2 toward the urea formation. Impressively, CuPd1Rh1-DAA assembled in a flow cell presents the highest urea Faradaic efficiency of 72.1% and urea yield rate of 53.2 mmol h-1 gcat -1 at -0.5 V versus RHE, representing nearly the highest performance among all reported UENC catalysts.

3.
ACS Nano ; 18(20): 13141-13149, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38718265

RESUMEN

Electrocatalytic reduction of NO2- to NH3 (NO2RR) offers an effective method for alleviating NO2- pollution and generating valuable NH3. Herein, a p-block single-atom alloy, namely, isolated Sb alloyed in a Cu substrate (Sb1Cu), is explored as a durable and high-current-density NO2RR catalyst. As revealed by the theoretical calculations and operando spectroscopic measurements, we demonstrate that Sb1 incorporation can not only hamper the competing hydrogen evolution reaction but also optimize the d-band center of Sb1Cu and intermediate adsorption energies to boost the protonation energetics of NO2--to-NH3 conversion. Consequently, Sb1Cu integrated in a flow cell achieves an outstanding NH3 yield rate of 2529.4 µmol h-1 cm-2 and FENH3 of 95.9% at a high current density of 424.2 mA cm-2, as well as a high durability for 100 h of electrolysis.

4.
Mater Horiz ; 11(11): 2603-2614, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38587002

RESUMEN

Thermomagnetic generation (TMG), a promising technology to convert low-grade waste heat to electricity, utilizes high performance TMG materials. However, the drawbacks of large hysteresis, poor mechanical properties and inadequate service life hinder the practical applications. For the first time, we evaluated the effect of different phase transitions on the TMG performance by systematically comparing the TMG performance of three typical Heusler alloys with similar composition but different phase transitions. Ni2Mn1.4In0.6 exhibits second-order magnetic transition (SOMT) from the ferromagnetic (FM) to paramagnetic (PM) state around TC = 316 K without thermal hysteresis. It presents highly comprehensive TMG performance, which is not only better than those of other two Heusler alloys with different phase transitions, but also better than those of most typical TMG materials. The maximum power density (1752.3 mW m-3), cost index (2.78 µW per €), and power generation index PGI (8.91 × 10-4) of Ni2Mn1.4In0.6 are 1-5, 1-4, and 1-7 orders of magnitude higher than those of most typical reported materials, respectively. In addition, Ni2Mn1.4In0.6 with SOMT also shows some advantages that first-order magnetic transition (FOMT) materials do not have, such as zero hysteresis and a long-term service life. In contrast to the short lifetime of a few minutes for the materials with FOMT, Ni2Mn1.4In0.6 with SOMT can serve for one month or even longer with excellent cycling stability. Consequently, we conclude that the SOMT Ni2Mn1.4In0.6 Heusler alloy with good TMG performance as well as zero hysteresis and long service life can be a better candidate than FOMT materials for practical applications of TMG.

5.
Dalton Trans ; 53(8): 3470-3475, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38323778

RESUMEN

Electrocatalytic NO2--to-NH3 reduction (NO2RR) has emerged as an intriguing route for simultaneous mitigation of harmful nitrites and production of valuable NH3. Herein, we design for the first time undercoordinated Cu nanowires (u-Cu) as an efficient and selective NO2RR electrocatalyst, delivering the maximum NO2--to-NH3 faradaic efficiency of 94.7% and an ammonia production rate of 494.5 µmol h-1 cm-2 at -0.7 V vs. RHE. Theoretical calculations reveal that the created undercoordinated Cu sites on u-Cu can enhance NO2- adsorption, boost NO2--to-NH3 energetics and restrict competitive hydrogen evolution, thereby enabling the active and selective NO2RR.

6.
J Colloid Interface Sci ; 661: 533-543, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308893

RESUMEN

Oxidized MXene quantum dots@CuNi bimetal (MQDs@CuNi) were firstly prepared through a simple hydrothermal method. Compared to the controlled samples, MQDs@CuNi1:1 showed the highest peroxidase-like activity. The catalytic mechanism of MQDs@CuNi1:1 was investigated using a steady-state fluorescence analysis, which showed that MQDs@CuNi1:1 efficiently decomposes H2O2 and produces highly reactive hydroxyl radicals (OH). Furthermore, theoretical calculations showed that the remarkable catalytic activity of MQDs@CuNi1:1 originates from the interaction between CuNi bimetal and MQDs to promote the activation and decomposition of H2O2, making it easier to combine with the hydrogen at the end of 3,3',5,5'-Tetramethylbenzidine (TMB). Accordingly, a sensitive colorimetric sensor is proposed to detect glyphosate (Glyp), displaying a low detection limit of 1.13 µM. The work will provide a new way for the development of high-performance nanozyme and demonstrate potential applicability for the determination of pesticide residues in environment.


Asunto(s)
Nitritos , Peroxidasa , Puntos Cuánticos , Elementos de Transición , Peroxidasa/química , Puntos Cuánticos/química , Glifosato , Colorimetría/métodos , Peróxido de Hidrógeno/análisis , Peroxidasas , Colorantes Fluorescentes/química
7.
Nano Lett ; 24(2): 541-548, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38185876

RESUMEN

Electrochemical reduction of NO to NH3 (NORR) offers a prospective method for efficient NH3 electrosynthesis. Herein, we first design single-atom Pd-alloyed Cu (Pd1Cu) as an efficient and robust NORR catalyst at industrial-level current densities (>0.2 A cm-2). Operando spectroscopic characterizations and theoretical computations unveil that Pd1 strongly electronically couples its adjacent two Cu atoms (Pd1Cu2) to enhance the NO activation while promoting the NO-to-NH3 protonation energetics and suppressing the competitive hydrogen evolution. Consequently, the flow cell assembled with Pd1Cu exhibits an unprecedented NH3 yield rate of 1341.3 µmol h-1 cm-2 and NH3-Faradaic efficiency of 85.5% at an industrial-level current density of 210.3 mA cm-2, together with an excellent long-term durability for 200 h of electrolysis, representing one of the highest NORR performances on record.

8.
J Colloid Interface Sci ; 659: 432-438, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38183809

RESUMEN

Electrocatalytic NO2- reduction to NH3 (NO2RR) holds great promise as a green method for high-efficiency NH3 production. Herein, an Rh single-atom catalyst where isolated Rh supported on defective BN nanosheets (Rh1/BN) is reported to exhibit the exceptional NO2RR activity and selectivity. Extensive experimental and theoretical studies unveil that the high NO2RR performance of Rh1/BN arises from the single-atom Rh sites, which not only promote the activation and hydrogenation of NO2--to-NH3 process, but also hamper the undesired hydrogen evolution. Consequently, Rh1/BN assembled in a flow cell exhibits the highest NH3 yield rate of 2165.4 µmol h-1 cm-2 and FENH3 of 97.83 % at a high current density of 355.7 mA cm-2, ranking it the most efficient catalysts for NO2--to-NH3 conversion.

9.
Inorg Chem ; 63(1): 78-83, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38133814

RESUMEN

Electrocatalytic nitrite reduction to ammonia (NO2RR) emerges as a promising route to simultaneously attain harmful NO2- removal and green NH3 synthesis. In this study, amorphous CoS2 nanorods (a-CoS2) are first demonstrated as an effective NO2RR catalyst, which exhibits the maximum FENH3 of 88.7% and NH3 yield rate of 438.1 µmol h-1 cm-2 at -0.6 V vs RHE. Detailed experimental and computational investigations reveal that the high NO2RR performance of a-CoS2 originates from the amorphization-induced S vacancies to facilitate NO2- activation and hydrogenation, boost the electron transport kinetics, and inhibit the competitive hydrogen evolution.

10.
Dalton Trans ; 53(3): 877-881, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38131476

RESUMEN

Electrocatalytic NO2- reduction to NH3 (NO2RR) is an appealing approach for mitigating NO2- pollution and for the synthesis of valuable NH3, and so the exploration for high-performance NO2RR catalysts is pivotal yet remains challenging. Herein, amorphous MoO3 nanosheets (am-MoO3) were designed as a high-performance NO2RR electrocatalyst, delivering a maximum NO2--to-NH3 faradaic efficiency of 94.8% and NH3 yield rate of 480.4 µmol h-1 cm-2 at -0.6 V vs. RHE. Theoretical computations revealed that the largely enhanced NO2RR activity of am-MoO3 originated from the amorphization-induced O-vacancies, which could enhance the NO2--to-NH3 reaction energetics and hamper the competitive hydrogen evolution.

11.
Inorg Chem ; 62(51): 20923-20928, 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38059925

RESUMEN

Electrocatalytic NO-to-NH3 conversion (NORR) provides a fascinating route toward the eco-friendly and valuable production of NH3. In this study, amorphous FeS2 (a-FeS2) is first demonstrated as a high-efficiency catalyst for the NORR, showing a maximum FENH3 of 92.5% with a corresponding NH3 yield rate of 227.1 µmol h-1 cm-2, outperforming most NORR catalysts reported earlier. Experimental measurements combined with theoretical computations clarify that the exceptional NORR activity of a-FeS2 originates from the amorphization-induced upshift of the d-band center to promote the NO activation and NO-to-NH3 hydrogenation energetics.

12.
Chem Commun (Camb) ; 59(93): 13887-13890, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37933626

RESUMEN

We design single-atom Cu anchored on Mo2C (Cu1/Mo2C) as an effective electrocatalyst towards electrochemical nitrite reduction to ammonia (NO2RR), exhibiting an NH3-faradaic efficiency of 91.5% with a corresponding NH3 yield rate of 472.9 µmol h-1 cm-2 at -0.6 V vs. RHE. Theoretical computations unravel that single-atomic Cu couples with the surface Mo atom of Mo2C to enable the construction of Cu-Mo dual-active centers, which can synergistically activate NO2- and minimize the NO2--to-NH3 reaction energy barrier, whilst suppressing the competing hydrogen evolution reaction.

13.
iScience ; 26(10): 107944, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37810221

RESUMEN

Electrocatalytic reduction of nitrite to ammonia (NO2RR) is considered as an appealing route to simultaneously achieve sustainable ammonia production and abate hazardous nitrite pollution. Herein, atomically Nb-doped NiO nanoflowers are designed as a high-performance NO2RR catalyst, which exhibits the highest NH3-Faradaic efficiency of 92.4% with an NH3 yield rate of 200.5 µmol h-1 cm-2 at -0.6 V RHE. Theoretical calculations unravel that Nb dopants can act as Lewis acid sites to render effective NO2- activation, decreased protonation energy barriers, and restricted hydrogen evolution, ultimately leading to a high NO2RR selectivity and activity.

14.
ACS Nano ; 17(21): 21328-21336, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37870919

RESUMEN

Electrochemical conversion of NO3- into NH3 (NO3RR) holds an enormous prospect to simultaneously yield valuable NH3 and alleviate NO3- pollution. Herein, we report monodispersed Bi-doped FeS2 (Bi-FeS2) as a highly effective NO3RR catalyst. Atomic coordination characterizations of Bi-FeS2 disclose that the isolated Bi dopant coordinates with its adjacent Fe atom to create the unconventional p-d hybridized Bi-Fe dinuclear sites. Operando spectroscopic measurements combined with theoretical calculations disclose that Bi-Fe dinuclear sites can synergistically enhance the hydrogenation energetics of NO3--to-NH3 pathway, while suppressing the competitive hydrogen evolution, leading to a high NO3RR selectivity and activity. Consequently, the specially designed flow cell equipped with Bi-FeS2 exhibits a high NH3 yield rate of 83.7 mg h-1 cm-2 with a near-100% NO3--to-NH3 Faradaic efficiency at an ampere-level current density of 1023.2 mA cm-2, together with an excellent long-term stability for 100 h of electrolysis, ranking almost the highest performance among all reported NO3RR catalysts.

15.
J Colloid Interface Sci ; 652(Pt B): 2180-2185, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37709610

RESUMEN

We report that isolated Cu atoms anchored on MnO2 nanowires (Cu1/MnO2) can be an effective catalyst towards the electrocatalytic NO2--to-NH3 reduction (NO2RR). A combination of experiments and theoretical calculations reveals that isolated Cu sites can effectively activate NO2-, lower the energy barrier of *NO→*NOH rate-determining step and suppress the competitive hydrogen evolution, thus facilitating both activity and selectivity towards the NO2RR. As a result, Cu1/MnO2 shows the maximum NH3-Faradaic efficiency of 93.3% with a corresponding NH3 yield rate of 439.8 µmol h-1 cm-2 at -0.7 V vs. RHE, together with an excellent electrocatalytic durability.

16.
Nat Commun ; 14(1): 4811, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558655

RESUMEN

Low grade waste heat accounts for ~65% of total waste heat, but conventional waste heat recovery technology exhibits low conversion efficiency for low grade waste heat recovery. Hence, we designed a thermomagnetic generator for such applications. Unlike its usual role as the coil core or big magnetic yoke in previous works, here the magnetocaloric material acts as a switch that controls the magnetic circuit. This makes it not only have the advantage of flux reversal of the pretzel-like topology, but also present a simpler design, lower magnetic stray field, and higher performance by using less magnetocaloric material than preceding devices. The effects of key structural and system parameters were studied through a combination of experiments and finite element simulations. The optimized max power density PDmax produced by our device is significantly higher than those of other existing active thermomagnetic, thermo, and pyroelectric generators. Such high performance shows the effectiveness of our topology design of magnetic circuit with magnetocaloric switch.

17.
J Colloid Interface Sci ; 649: 724-730, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37385037

RESUMEN

Electrochemical NO3--to-NH3 reduction (NO3RR) emerges as an appealing strategy to alleviate contaminated NO3- and generate valuable NH3 simultaneously. However, substantial research efforts are still needed to advance the development of efficient NO3RR catalysts. Herein, atomically Mo-doped SnO2-x with enriched O-vacancies (Mo-SnO2-x) is reported as a high-efficiency NO3RR catalyst, delivering the highest NH3-Faradaic efficiency of 95.5% with a corresponding NH3 yield rate of 5.3 mg h-1 cm-2 at -0.7 V (RHE). Experimental and theoretical investigations reveal that d-p coupled Mo-Sn pairs constructed on Mo-SnO2-x can synergistically enhance the electron transfer efficiency, activate the NO3- and reduce the protonation barrier of rate-determining step (*NO→*NOH), thereby drastically boosting the NO3RR kinetics and energetics.

18.
Chem Commun (Camb) ; 59(58): 8961-8964, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37378464

RESUMEN

We demonstrate Pd metallene as an efficient catalyst for electrocatalytic NO reduction to NH3 (NORR), showing the maximum NO-to-NH3 faradaic efficiency of 89.6% with a corresponding NH3 yield rate of 112.5 µmol h-1 cm-2 at -0.3 V in neutral media. Theoretical calculations unveil that NO can be effectively activated and hydrogenated on the hcp site of Pd through a mixed pathway with a low energy barrier.

19.
Inorg Chem ; 62(23): 8772-8777, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37253193

RESUMEN

We report VB2 as an efficient electrocatalyst for NO-to-NH3 electroreduction (NORR), showing the highest NH3-Faradaic efficiency of 89.6% with the corresponding NH3 yield rate of 198.3 µmol h-1 cm-2 at -0.5 V vs RHE. Theoretical calculations demonstrate that B sites of VB2 act as the key active centers which can facilitate the NORR protonation energetics and inhibit the competitive hydrogen evolution, boosting both NORR activity and selectivity.

20.
Inorg Chem ; 62(22): 8487-8493, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37219358

RESUMEN

We report iron diboride (FeB2) as a high-performance metal diboride catalyst for electrochemical NO-to-NH3 reduction (NORR), which shows a maximum NH3 yield rate of 289.3 µmol h-1 cm-2 and a NH3-Faradaic efficiency of 93.8% at -0.4 V versus reversible hydrogen electrode. Theoretical computations reveal that Fe and B sites synergetically activate the NO molecule, while the protonation of NO is energetically more favorable on B sites. Meanwhile, both Fe and B sites preferentially absorb NO over H atoms to suppress the competing hydrogen evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA