Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Front Pharmacol ; 13: 993862, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324680

RESUMEN

JAK/STAT signaling pathways are closely associated with multiple biological processes involved in cell proliferation, apoptosis, inflammation, differentiation, immune response, and epigenetics. Abnormal activation of the STAT pathway can contribute to disease progressions under various conditions. Moreover, tofacitinib and baricitinib as the JAK/STAT inhibitors have been recently approved by the FDA for rheumatology disease treatment. Therefore, influences on the STAT signaling pathway have potential and perspective approaches for diverse diseases. Chinese herbs in traditional Chinese medicine (TCM), which are widespread throughout China, are the gold resources of China and have been extensively used for treating multiple diseases for thousands of years. However, Chinese herbs and herb formulas are characterized by complicated components, resulting in various targets and pathways in treating diseases, which limits their approval and applications. With the development of chemistry and pharmacology, active ingredients of TCM and herbs and underlying mechanisms have been further identified and confirmed by pharmacists and chemists, which improved, to some extent, awkward limitations, approval, and applications regarding TCM and herbs. In this review, we summarized various herbs, herb formulas, natural compounds, and phytochemicals isolated from herbs that have the potential for regulating multiple biological processes via modulation of the JAK/STAT signaling pathway based on the published work. Our study will provide support for revealing TCM, their active compounds that treat diseases, and the underlying mechanism, further improving the rapid spread of TCM to the world.

2.
Int Immunopharmacol ; 108: 108894, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35729830

RESUMEN

Ulcerative colitis (UC) is a chronically relapsing inflammatory disease in the intestinal tract. Current unsatisfactory treatments prompt people to seek for alternative therapies and drug candidates. Cryptotanshinone (CTS), a diterpene quinoneextractedfromthe roots ofSalviamiltiorrhiza, has recently been shown to inhibit acute colitis by reducing pro-inflammatory mediators. However, whether CTS can protect against chronic UC and its effect on T lymphocytes remain unknown. In this study, CTS (20, 60 mg/kg) showed potent inhibitory activity against dextran sulfate sodium (DSS)-induced acute UC, as determined by weight loss, disease activity, colon length and histology. Similarly, in a model of DSS-induced chronic colitis, the administration of CTS prevented the disease progression with longer colon length, lower histological scores, and less expression of fibrosis-related collagen and α-smooth muscle actin in the colon. CTS also reduced the proportion of CD4+IL-17A+ Th17 cells in spleen and mesenteric lymph nodes of mice with acute or chronic colitis. However, CTS at 20 mg/kg had no effect on regulatory T cells (Tregs). In addition, CTS reduced the phosphorylation of signal transduction and transcription activator 3 (STAT3) in DSS-treated colon tissue. Further study showed that CTS concentration-dependently suppressed the differentiation of naïve CD4+ T cells into Th17 cells. CTS could not inhibit the activation and proliferation of T lymphocytes or attenuate the secretion of cytokines including IL-10, IL-2, IL-6 and IFN-γ, but could inhibit the production of IL-17A and TNF-α in Con A-stimulated splenocytes. CTS suppressed IL-6-induced phosphorylation and nuclear translocation of STAT3. In conclusion, our study demonstrated that CTS alleviated acute and chronic UC by suppressing STAT3 activation and Th17 cell differentiation, suggesting that it may be a promising candidate drug for the treatment of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Diferenciación Celular , Colitis/inducido químicamente , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colon/patología , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Humanos , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Ratones , Fenantrenos , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Células Th17
3.
Phytother Res ; 36(9): 3662-3671, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35766233

RESUMEN

Inflammatory bowel disease (IBD) is a non-specific chronic intestinal inflammatory disease, often presenting with abdominal pain, diarrhea, bloody stool, anorexia, and body loss. It is difficult to cure completely and a promising treatment is urgently needed. Natural compounds can offer promising chemical agents for treatment of diseases. Polydatin is a natural ingredient extracted from the dried rhizome of Polygonum cuspidatum, which has anti-inflammatory, anti-tumor, and dementia protection activities. The purpose of this study was to evaluate the therapeutic effect of polydatin on IBD and explore its possible mechanism. We found that polydatin could effectively suppress the differentiation of Th17 cells in vitro, but had no effect on the differentiation of Treg cells. Polydatin significantly alleviated colitis induced by dextran sulfate sodium (DSS) and 2, 4, 6-trinitrobenzenesulfonic acid (TNBS) in mice, and dramatically decreased the proportion of Th17 cells in spleen and mesenteric lymph nodes. Mechanism investigations revealed that polydatin specifically inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation by directly binding to STAT3, leading to Th17 cell reduction and thereby alleviating colitis. These findings provide novel insights into the anti-colitis effect of polydatin, which may be a promising drug candidate for the treatment of IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Diferenciación Celular , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colon , Sulfato de Dextran , Modelos Animales de Enfermedad , Glucósidos , Enfermedades Inflamatorias del Intestino/patología , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción STAT3/metabolismo , Estilbenos , Linfocitos T Reguladores/metabolismo , Células Th17 , Ácido Trinitrobencenosulfónico/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-34335849

RESUMEN

Neuroinflammation plays a crucial part in the commencement and advancement of ischemic stroke. Gualou Guizhi granule (GLGZG) is known to well exhibit neuroprotective effect, but it is not known whether GLGZG can regulate the inflammatory process at the cellular level in BV2 microglia cells and protect against microglia-mediated neurotoxicity in neurons. Herein, we aimed to investigate the anti-inflammatory effects of GLGZG on BV2 microglia cells and protection against microglia-mediated neurotoxicity in neurons. Methods. The cell model of neuroinflammation was constructed by lipopolysaccharide (LPS) to observe the effect of GLGZG in the presence or absence of GLGZG. The production of nitric oxide (NO), inflammatory mediators, was detected. Moreover, potential mechanisms associated with the anti-inflammatory effect, such as inhibition of microglial activation and nuclear factor kappa B (NF-κB), were also investigated. In addition, to prove whether GLGZG protects against microglia-mediated neurotoxicity, neuronal HT-22 cells were cultured in the conditioned medium. And cell survivability and neuronal apoptosis of HT-22 were evaluated. Results. It was found that a main regulator of inflammation, NO, is suppressed by GLGZG in BV2 microglial cells. Moreover, GLGZG dose dependently decreased the mRNA and protein levels of inducible NO synthase (iNOS) in LPS-stimulated BV2 cells. Additionally, GLGZG inhibited the expression and secretion of proinflammatory cytokines in BV2 microglial cells. Also, GLGZG inhibited LPS-activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in BV2 microglial cells at the intracellular level. GLGZG significantly affected Akt phosphorylation: phosphorylated forms of Akt increased. To check whether GLGZG protects against microglia-mediated neurotoxicity, neuronal HT-22 cells were incubated in the conditioned medium. GLGZG showed a neuroprotective effect by promoting cell survivability and suppressing neuronal apoptosis. Conclusions. GLGZG exerted its potential effects on suppressing inflammatory responses in LPS-induced BV2 cells by regulating NF-κB and Akt pathways. In addition, GLGZG could protect against microglia-mediated neurotoxicity in HT-22.

5.
Artículo en Inglés | MEDLINE | ID: mdl-33747105

RESUMEN

Pyroptosis is a proinflammatory form of regulated cell death that plays an important role in ischemic stroke. Gualou Guizhi granule (GLGZG) is a classic prescription that has been shown to exert neuroprotective effects against cerebral ischemia reperfusion injury. In the present study, we examined the involvement of pyroptosis and its associated mechanism in protecting nerve function. Methods. Primary neurons were exposed to oxygen-glucose deprivation and reperfusion (OGD/R) conditions in the presence or absence of GLGZG. Cellular viability was measured by the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT) assay. The number of apoptoic cells was detected by NeuN and NSE protein expression. The expression levels of the pyroptosis markers, namely, NOD-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, interleukin-18 (IL-18), and IL-1ß were determined by quantitative real-time PCR analysis, western blot, and ELISA analyses as appropriate. Moreover, the expression levels of the PI3K/Akt pathway key proteins were determined by quantitative real-time PCR analysis and western blot assays. To determine the PI3K/Akt pathway involvement in GLGZG-mediated neuroprotection, the PI3K inhibitor LY294002 (LY, 10 µM) was added. The expression levels of NeuN, Akt, and p-Akt were evaluated. Results. It was found that GLGZG could inhibit OGD/R-induced cell apoptosis, increase neuronal cell viability, decrease the production of IL-18 and IL-1ß, and downregulate the expression levels of pyroptosis markers (NLRP3, ASC, and caspase-1). Furthermore, GLGZG could modulate the PI3K/Akt signaling pathway. Pharmacological inhibition of the PI3K pathway not only abrogated the effects of GLGZG on Akt but also neutralized its prosurvival and antipyroptotic actions. Conclusions. The findings indicated that GLGZG pretreatment effectively reduced OGD/R-induced injury by inhibiting cell pyroptosis and activating the PI3K/Akt pathway. These data provide important evidence for the therapeutic applications of this regimen in ischemic stroke.

6.
Eur J Med Chem ; 209: 112935, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33097301

RESUMEN

Salidroside [(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-(4-hydroxyphenethoxy)tetrahy-dro-2H-pyran-3,4,5-triol] is an antioxidant, anti-inflammatory and neuroprotective agent, but its drug-like properties are unoptimized and its mechanism of actions is uncertain. We synthesized twenty-six novel derivatives of salidroside and examined them in CoCl2-treated PC12 cells using MTT assay. pOBz, synthesized by esterifying the phenolic hydroxyl group of salidroside with benzoyl chloride, was one of five derivatives that were more cytoprotective than salidroside, with an EC50 of 0.038 µM versus 0.30 µM for salidroside. pOBz was also more lipophilic, with log P of 1.44 versus -0.89 for salidroside. Reverse virtual docking predicted that pOBz would bind strongly with monoamine oxidase (MAO) B by occupying its entrance and substrate cavities, and by interacting with the inter-cavity gating residue Ile199 and Tyr435 of the substrate cavity. Enzymatic studies confirmed that pOBz competitively inhibited the activity of purified human MAO-B (Ki = 0.041 µM versus Ki = 0.92 µM for salidroside), and pOBz was highly selective for MAO-B over MAO-A. In vivo, pOBz inhibited cerebral MAO activity after middle cerebral artery occlusion with reperfusion in rats, and it reduced cerebral infarct volume, improved neurological function and NeuN expression, and inhibited complement C3 expression and apoptosis. Our results suggest that pOBz is a structurally novel type of competitive and selective MAO-B inhibitor, with potent neuroprotective properties after cerebral ischemia-reperfusion injury in rats.


Asunto(s)
Glucósidos/síntesis química , Inhibidores de la Monoaminooxidasa/síntesis química , Monoaminooxidasa/metabolismo , Fármacos Neuroprotectores/síntesis química , Fenoles/síntesis química , Daño por Reperfusión/tratamiento farmacológico , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Complemento C3/metabolismo , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica/efectos de los fármacos , Glucósidos/farmacología , Humanos , Masculino , Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa/farmacología , Fármacos Neuroprotectores/farmacología , Células PC12 , Fenoles/farmacología , Unión Proteica , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
7.
Int J Pharm ; 573: 118840, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31715358

RESUMEN

Polymeric micelles (PMs) are currently under investigation as potential nanocarriers for oral administration of paclitaxel (PTX). Previously, we developed amphiphilic carboxymethyl chitosan-rhein (CR) conjugate for oral delivery of PTX. PTX-loaded CR PMs exhibited a homogeneous and small size (<200 nm) with a drug loading capacity (DL) of 35.46 ±â€¯1.07%. However, The absorption parameters of PTX using CR PMs have not been studied before. Here, we evaluated the intestinal permeation of CR PMs by in situ intestinal absorption experiments. PTX-loaded CR PMs enhanced the absorption of PTX in the intestine without causing significant intestinal villi injury. Compared to the P-glycoprotein (P-gp) inhibition of verapamil, the transport mechanism of CR PMs across intestinal epithelial cells may bypass P-gp efflux. Caco-2 cell uptake assays also confirmed that CR PMs can be taken up into the enterocyte as whole and independent of P-gp. Local biodistribution evaluation showed that fluorescence-labeled CR PMs were absorbed into the intestinal villi. In vivo bioimaging of tumor-bearing mice verified a significant portion of CR PMs were intactly absorbed through the intestine, then distributed and accumulated at the tumor site. For their significant intestinal permeation enhancement, CR PMs might be considered as promising oral delivery carriers for PTX and other water-insoluble drugs.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Portadores de Fármacos/química , Mucosa Intestinal/metabolismo , Neoplasias/tratamiento farmacológico , Paclitaxel/administración & dosificación , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Administración Oral , Animales , Antraquinonas/química , Antineoplásicos Fitogénicos/farmacocinética , Células CACO-2 , Quitosano/análogos & derivados , Quitosano/química , Modelos Animales de Enfermedad , Composición de Medicamentos/métodos , Humanos , Masculino , Ratones , Micelas , Neoplasias/diagnóstico por imagen , Paclitaxel/farmacocinética , Permeabilidad , Ratas , Distribución Tisular , Verapamilo/administración & dosificación , Verapamilo/farmacocinética
8.
Int J Nanomedicine ; 14: 8805-8818, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31806973

RESUMEN

PURPOSE: The objective of the present study was to develop a liposomal drug delivery system based on combretastatin A4 (CA4) prodrugs modified with varying alkyl chains and investigate the in vitro drug conversion from prodrug and in vivo antitumor effect. METHODS: The prodrug of CA4 was synthesized with stearyl chloride (18-carbon chain), palmitoyl chloride (16-carbon chain), myristoyl chloride (14-carbon chain), decanoyl chloride (10-carbon chain), and hexanoyl chloride (6-carbon chain) at the 3'-position of the CA4. Subsequently, it was encapsulated with liposomes through the thin-film evaporation method. Furthermore, the characteristics of prodrug-liposome were evaluated using in vitro drug release, conversion, and cytotoxicity assays, as well as in vivo pharmacokinetic, antitumor, and biodistribution studies. RESULTS: The liposome system with loaded CA4 derivatives was successfully developed with nano-size and electronegative particles. The rate of in vitro drug release and conversion was reduced as the fatty acid carbon chain lengthened. On the contrary, in vivo antitumor effects were improved with the enlargement of the fatty acid carbon chain. The results of the in vivo pharmacokinetic and tissue distribution studies indicated that the reduced rate of CA4 release with a long carbon chain could prolong the circulation time and increase the drug concentration in the tumor tissue. CONCLUSION: These results suggested that the release or hydrolysis of the parent drug from the prodrug was closely related with the in vitro and in vivo properties. The slow drug release of CA4 modified with longer acyl chain could prolong the circulation time and increase the concentration of the drug in the tumor tissue. These effects play a critical role in increasing the antitumor efficacy.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Liposomas/administración & dosificación , Profármacos/química , Estilbenos/administración & dosificación , Acilación , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Liberación de Fármacos , Estabilidad de Medicamentos , Humanos , Liposomas/química , Células MCF-7 , Masculino , Ratones , Profármacos/administración & dosificación , Profármacos/farmacología , Ratas Sprague-Dawley , Estilbenos/química , Estilbenos/farmacocinética , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Anal Methods Chem ; 2019: 8320171, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31485369

RESUMEN

Rhizoma Alismatis (RA), widely known as "Ze-Xie" in China, is the tuber of Alisma orientale (Sam.) Juzep (Alismaceae), a Chinese herbal medicine that has been used to treat hyperlipidemia, diabetes, hypertension, dysuria, and inflammation. In this study, a sensitive and reliable method based on an ultra-performance liquid chromatography (UPLC) couple with two ionisation modes, including electrospray ionisation (ESI) and atmospheric pressure chemical ionisation (APCI) tandem mass spectrometry (MS), namely, UPLC-ESI/APCI-MS/MS was developed and validated to simultaneously determine 8 triterpenoids (ESI mode) and 2 sesquiterpenoids (APCI mode) in RA. Ten marker compounds were analysed with a Waters' CORTECS UPLC C18 column (200 mm × 2.1 m, 1.6 µm) and gradient elution with water (contained 0.1% formic) and acetonitrile within 7 min. The established method was validated for linearity, intra- and interday precisions, accuracy, recovery, and stability. The calibration curve for 10 marker compounds showed good linear regression (r > 0.9971). The limits of detection and quantification for analytes were 0.14-1.67 ng/mL and 0.44-5.65 ng/mL, respectively. The relative standard deviations (RSD, %) and accuracy (RE, %) of intra- and interday precisions were less than 3.83% and 1.21% and 3.22% and 1.46%, repeatability and stability for real samples were less than 2.78% and 3.19%, respectively. All recoveries of the 10 marker compounds ranged from 97.24% to 102.49% with RSDs less than 4.05%. The developed method efficiently determined the 10 marker compounds in RA and was subsequently applied to optimise harvest time and crude processing temperature. The result indicated the 90% wilted phase and 70°C (or lower) may be the best harvest time and the processing temperature of RA.

10.
Zhongguo Zhong Yao Za Zhi ; 44(11): 2292-2307, 2019 Jun.
Artículo en Chino | MEDLINE | ID: mdl-31359656

RESUMEN

The present study is to establish a quantitative analysis of multi-components by single marker(QAMS) for determining contents of seven compositions in Alismatis Rhizoma, alismoxide, alisol C 23-acetate, alisol A, alismol, alisol B, alisol B 23-acetate and 11-deoxy-alisol B. Six relative correction factors(RCFs) of alismoxide, alisol C 23-acetate, alisol A, alismol, alisol B and 11-deoxy-alisol B were established in the UPLC method with alisol B 23-acetate as the internal standard, which was to calculate the mass fraction of each. The mass fraction of seven effective constituents in Alismatis Rhizoma was calculated by the external standard method(ESM) at the same time. Compared with the content results determined by the ESM and QAMS, the feasibility and accuracy of QAMS method were verified. Within the linear range, the RCFs of alismoxide, alisol C 23-acetate, alisol A, alismol, alisol B, 11-deoxy-alisol B were 0.946, 4.183, 0.915, 1.039, 0.923 and 1.244, respectively, with good repeatability in different experimental conditions. There was no significant difference between the QAMS method and ESM method. Then, QAMS method was applied to determination of the different degree Alismatis Rhizoma from different areas. As a result, the concentrations of 7 components have differences in different areas, but no significant differences in different grades. The QAMS method is feasible and accurate for the determination of the seven chemical compositions, and which can be used for quality control of Alismatis Rhizoma.


Asunto(s)
Alismatales/química , Medicamentos Herbarios Chinos/análisis , Fitoquímicos/análisis , Rizoma/química
11.
Zhongguo Zhong Yao Za Zhi ; 44(13): 2785-2791, 2019 Jul.
Artículo en Chino | MEDLINE | ID: mdl-31359691

RESUMEN

Extrusion-spheronisation method was used to prepare Rhus chinensis total phenolic acid pellets. The formula and preparation of R. chinensis total phenolic acid pellets were optimized. The formulas( drug loading capacity,diluent,wetting agent and anti-sticking agent) were determined by the single factor test with yield,appearance and performance as the indexes. The preparation was optimized by Box-Behnken design and response surface method,with the rate of extrusion,rate of spheronization and time of spheronization as the independent variables and the overall desirability value of yield,friability and roundness as the dependent variables. The optimal formula of pellets was as follows: drug loading capacity 28. 7%,MCC-lactose 9 ∶1,silicon dioxide as anti-sticking agent,and 60% ethanol as wetting agent. The optimal preparation was determined as follows: the rate of extrusion was 43 r·min-1,the rate of spheronization was 1 800 r·min-1,and the time of spheronization was 4 min. The absolute deviation between predicted value and estimated value under the conditions was less than 5. 0%,with a high degree of model fit. The preparation parameters obtained were accurate,reliable and reproducible. Under scanning electron microscopy( SEM),R. chinensis total phenolic acid pellets were uniform in diameter,round and smooth. The optimal formulation and process are stable and feasible for preparing R. chinensis total phenolic acid pellets.


Asunto(s)
Composición de Medicamentos/métodos , Hidroxibenzoatos/química , Rhus/química , Tamaño de la Partícula , Solubilidad
12.
Carbohydr Polym ; 206: 121-131, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30553305

RESUMEN

An amphiphilic carboxymethyl chitosan-rhein (CR) conjugate was prepared, characterized, and evaluated as a potential carrier material for oral delivery of paclitaxel (PTX). CR conjugate self-assembled in aqueous environment into CR polymeric micelles (CR PMs). The drug loading capacity and entrapment efficiency of PTX-loaded CR PMs were 35.24 ± 1.58% and 86.99 ± 12.26%, respectively. Pharmacokinetic results indicate that PTX-loaded CR PMs could significantly enhance the oral bioavailability of PTX. Confocal imaging of intestinal sections verified many of CR PMs were absorbed as whole through the intestinal membrane. The cytotoxicity assays in Caco-2 cells and in vivo antitumor efficacy showed that PTX-loaded CR PMs had a stronger antitumor efficacy. A synergistic antitumor effect between CR conjugate and PTX was proven in MCF-7 cells and antitumor efficacy studies. The investigation of CR conjugate developed in this study showed that CR PMs are promising for oral delivery of water-insoluble antitumor drugs.


Asunto(s)
Antraquinonas/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Portadores de Fármacos/química , Micelas , Neoplasias/tratamiento farmacológico , Paclitaxel/uso terapéutico , Administración Oral , Animales , Antraquinonas/administración & dosificación , Antraquinonas/síntesis química , Antraquinonas/farmacocinética , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacocinética , Línea Celular Tumoral , Quitosano/administración & dosificación , Quitosano/análogos & derivados , Quitosano/síntesis química , Quitosano/química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/síntesis química , Liberación de Fármacos , Sinergismo Farmacológico , Humanos , Masculino , Ratones Endogámicos ICR , Paclitaxel/administración & dosificación , Paclitaxel/química , Paclitaxel/farmacocinética , Verapamilo/uso terapéutico
13.
Inflammation ; 42(2): 506-515, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30328549

RESUMEN

Compound 3R-(4'-hydroxyl-3'-O-ß-D-glucopyranosyl phenyl)-dihydro isocoumarin (GDC) is a natural isocoumarin, recently isolated from the stems of H. paniculiflorum. However, we know little about the effects of GDC on rheumatoid arthritis (RA). This study aims to investigate the protective effects and potential mechanisms of GDC against LPS-induced inflammation in vitro. Fibroblast-like synoviocytes (FLSs) obtained from synovial tissue of rats were induced by lipopolysaccharide (LPS) and treated with GDC. Cell viability was determined by mitochondrial-respiration-dependent3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. Secretion of various inflammatory mediators was analyzed by ELISA and RayBio® Rat Cytokine Antibody Array. Potential mechanisms that are associated with anti-inflammatory effect were examined by Western blot. Results showed that GDC significantly inhibited the production of tumor necrosis factor alpha (TNF-α) and interleukin- (IL-) 6 induced by LPS. GDC also reduced the expression of inducible nitric oxide synthase (iNOS), TNF-α, IL-6, and IL-1ß, as well as proinflammatory cytokines such as activin A, ciliary neurotrophic factor (CNTF), fractalkine, IFN-γ, IL-4, and TIMP-1. Moreover, GDC inhibited LPS-induced phosphorylation of extracellular regulated protein kinases (ERK1/2), p38 mitogen-activated protein kinases (p38), c-Jun N-terminal kinase (JNK), and IκB. And GDC also blocked NF-κBp65 nuclear translocation. All the results suggested that the protective effects of GDC against LPS-induced inflammation in vitro may be related with NF-κB and JNK signaling pathway.


Asunto(s)
Inflamación/tratamiento farmacológico , Isocumarinas/farmacología , Animales , Supervivencia Celular , Células Cultivadas , Citocinas/antagonistas & inhibidores , Glicósidos , Inflamación/inducido químicamente , Isocumarinas/uso terapéutico , Lipopolisacáridos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Extractos Vegetales , Sustancias Protectoras/farmacología , Ratas , Transducción de Señal/efectos de los fármacos , Sinoviocitos/efectos de los fármacos
14.
Neurochem Res ; 43(5): 1003-1009, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29564698

RESUMEN

Stroke involves numerous pathophysiological processes and oxidative stress is considered as a main cellular event in its pathogenesis. The nuclear factor erythroid-2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway plays a key role in inducing phase II detoxifying enzymes and antioxidant proteins and is now considered as a interesting therapeutic target for the treatment of stroke. The objective of this study is to investigate the protective effect of Gualou Guizhi granule (GLGZG) against oxidative stress and explore the protective mechanism of the Nrf2/ARE pathway. In vivo, administration of GLGZG in a rat model of focal cerebral ischemia significantly suppressed oxidative injury by increasing the activity of superoxide dismutase and glutathione level and decreasing reactive oxygen species and malondialdehyde levels. Western blot analysis showed that GLGZG induced nuclear translocation of Nrf2, and combined with real-time PCR results, which indicated that GLGZG up-regulated the Nrf2/ARE pathway. In addition, in cultured PC12 cells, GLGZG protected against H2O2 induced oxidative injury and activated the Nrf2/ARE pathway. All the results demonstrated that GLGZG in the management of cerebral ischemia and H2O2 induced oxidative injury may be associated with activation of Nrf2/ARE signaling pathway.


Asunto(s)
Elementos de Respuesta Antioxidante/efectos de los fármacos , Antioxidantes/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/prevención & control , Masculino , Células PC12 , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/prevención & control
15.
Inflammation ; 41(2): 732-740, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29318480

RESUMEN

The excessive activation of microglia plays a key role in the pathogenesis of neurodegenerative diseases. The neuroprotective properties of rosmarinic acid have been reported in a variety of disease models both in vitro and in vivo; however, the mechanism underlying its anti-neuroinflammatory activity has not been clearly elucidated. In the present study, we evaluated the anti-inflammatory effects of rosmarinic acid in conditions of neuroinflammatory injury in vitro and in vivo. The results indicated that rosmarinic acid reduced the expression of CD11b, a marker of microglia and macrophages, in the brain and dramatically inhibited the levels of inflammatory cytokines and mediators, such as TNFα, IL-6, IL-1ß, COX-2, and iNOS, in a dose-dependent manner both in vitro and in vivo. Consistent with these results, the expression levels of TLR4 and CD14 and the phosphorylation of JNK were also reduced. Further study showed that rosmarinic acid suppresses the activation of the NF-κB pathway and NLRP3 inflammasome, which may contribute to its anti-inflammatory effects. These results suggest that rosmarinic acid significantly reduced TLR4 and CD14 expression and NF-κB and NLRP3 inflammasome activation, which is involved in anti-neuroinflammation.


Asunto(s)
Cinamatos/farmacología , Depsidos/farmacología , Inflamación/tratamiento farmacológico , Receptores de Lipopolisacáridos/antagonistas & inhibidores , Receptor Toll-Like 4/antagonistas & inhibidores , Animales , Química Encefálica/efectos de los fármacos , Citocinas/efectos de los fármacos , Citocinas/metabolismo , Inflamasomas/metabolismo , Inflamación/inducido químicamente , Mediadores de Inflamación , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/efectos adversos , Ratones , FN-kappa B/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR , Ácido Rosmarínico
16.
Inflammation ; 41(2): 449-463, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29198014

RESUMEN

Salidroside is neuroprotective across a wide therapeutic time-window after cerebral ischemia-reperfusion injury (IRI). Here, we investigated the role of complement in mediating effects of salidroside after cerebral IRI in rats. Rats were administrated with vehicle or salidroside 50 mg/kg, given daily for either 24 or 48 h, after middle cerebral artery occlusion (MCAO) for 2 h and reperfusion for 1 h. Levels of proteins in ischemic brain were measured by immunofluorescence and western blotting. We observed early increases in the deposition of immunoglobulin M, mannose-binding lectin 2, and annexin IV on cerebral endothelial cells, induction of the complement components C3 and C3a, by 24 h after IRI, and a later significant increase in the complement component C1q by 48 h. Salidroside prevented these changes. The neuroplasticity-related early growth response proteins Egr1, Egr2, and Egr4 and activity-regulated cytoskeleton-associated protein increased transiently in the first 6 h after IRI but then decreased below baseline by 48 h after IRI. Neither salidroside nor a C3a receptor antagonist (C3aRA) affected these proteins 24 h after IRI, but both reversed their later decreases to similar and non-additive extents. Salidroside and C3aRA increased NeuN in a non-additive manner after IRI. Our results suggest that salidroside exerts neuroprotection by reducing early activation of the lectin pathway on the cerebral endothelium and inhibiting the gradual activation of the classical pathway after cerebral IRI. This prolonged neuroprotection may depend, at least in part, on increased expression of neuroplasticity-related genes driven by reduced complement activation.


Asunto(s)
Proteínas Inactivadoras de Complemento/farmacología , Factores de Transcripción de la Respuesta de Crecimiento Precoz/metabolismo , Glucósidos/farmacología , Neuroprotección/efectos de los fármacos , Fenoles/farmacología , Daño por Reperfusión/tratamiento farmacológico , Animales , Isquemia Encefálica/tratamiento farmacológico , Complemento C3/antagonistas & inhibidores , Proteínas Inactivadoras de Complemento/uso terapéutico , Proteínas del Sistema Complemento/efectos de los fármacos , Glucósidos/uso terapéutico , Infarto de la Arteria Cerebral Media , Fenoles/uso terapéutico , Ratas , Factores de Tiempo
17.
Zhongguo Zhong Yao Za Zhi ; 42(10): 1877-1882, 2017 May.
Artículo en Chino | MEDLINE | ID: mdl-29090546

RESUMEN

The paper was aimed to establish a quality evaluation model for Gualou Guizhi decoction based on the chemical compositions and biological effects. Ultra high performance liquid chromatograph-mass spectrometer was used to analyze and determine 24 kinds of chemical compositions in Gualou Guizhi decoction, and then, biological activity effect was quantitatively assessed in a zebrafish neuronal injury model which was induced by mycophenolate mofetil (MMF). As a result, the established method for quality evaluation of Gualou Guizhi decoction based on the chemical compositions and biological effects is feasible, stable and reliable, which can provide reference for quality control of compound Chinese medicines.


Asunto(s)
Medicamentos Herbarios Chinos/normas , Control de Calidad , Animales , Cromatografía Líquida de Alta Presión , Medicamentos Herbarios Chinos/farmacología , Neuronas/efectos de los fármacos , Pez Cebra
18.
J Anal Methods Chem ; 2017: 8451383, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28808600

RESUMEN

A rapid and sensitive ultrafast performance liquid chromatography-tandem mass spectrometry method (UPLC-MS/MS) was developed for the simultaneous determination of 11 compounds in Gualou Guizhi Granule (GLGZG), including liquiritin, isoliquiritin, liquirtin apioside, isoliquiritin apioside, liquiritigenin, isoliquiritigenin, glycyrrhizic acid, glycyrrhetinic acid, paeoniflorin, albiflorin, and paeoniflorin sulfonate in rat plasma. UPLC-MS/MS assay with negative ion mode was performed on a Waters CORTECS C18 (2.1 × 100 mm, 1.6 µm) with the mobile phase consisting of 0.1% aqueous formic acid (A) and acetonitrile (B) in gradient elution at a flow rate of 0.25 mL·min-1. The method was linear for all analytes within the detection range (r ≥ 0.9597). The inter- and intraday precision (RSD) were 2.21-6.41% and 1.67-6.18%; the inter- and intraday accuracy (recover) were 92.48-114.03% and 90.23-112.04%. And the recovery rate ranged from 81.30% to 108.22%. The matrix effect values obtained for analytes ranged from 88.91% to 113.32%. This validated method was successfully applied to a pharmacokinetics study in rats after oral administration of GLGZG.

19.
Inflammation ; 40(4): 1297-1309, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28478514

RESUMEN

Salidroside is being investigated for its therapeutic potential in stroke because it is neuroprotective over an extended therapeutic window of time. In the present study, we investigated the mechanisms underlying the anti-inflammatory effects of salidroside (50 mg/kg intraperitoneally) in rats, given 1 h after reperfusion of a middle cerebral artery that had been occluded for 2 h. After 24 h, we found that salidroside increased the neuronal nuclear protein NeuN and reduced the marker of microglia and macrophages CD11b in the peri-infarct area of the brain. Salidroside also decreased IL-6, IL-1ß, TNF-α, CD14, CD44, and iNOs mRNAs. At the same time, salidroside increased the ratio of phosphorylated protein kinase B (p-Akt) to total Akt. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 prevented this increase in p-Akt and reversed the inhibitory effects of salidroside on CD11b and inflammatory mediators. Salidroside also elevated the protein levels of hypoxia-inducible factor (HIF) subunits HIF1α, HIF2α, HIF3α, and of erythropoietin (EPO). The stimulatory effects of salidroside on HIFα subunits were blocked by LY294002. Moreover, YC-1, a HIF inhibitor, abolished salidroside-mediated increase of HIF1α and prevented the inhibitory effects of salidroside on CD11b and inflammatory mediators. Taken together, our results provide evidence for the first time that all three HIFα subunits and EPO can be regulated by PI3K/Akt in cerebral tissue, and that salidroside entrains this signaling pathway to induce production of HIFα subunits and EPO, one or more of which mediate the anti-inflammatory effects of salidroside after cerebral IRI.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Glucósidos/farmacología , Inflamación/prevención & control , Fenoles/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Antiinflamatorios , Eritropoyetina/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Daño por Reperfusión
20.
Molecules ; 22(3)2017 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-28264448

RESUMEN

Paeoniflorin (PF) is an active ingredient of Paeoniae Radix which possesses the neuroprotective effect. However, so far, the neuroprotective mechanism of PF has still not been fully uncovered. The Ca2+/Ca2+/calmodulin-dependent protein kinase II (CaMKII)/cAMP response element-binding (CREB) signaling pathway plays an important role in the intracellular signal transduction pathway involved in cell proliferation, cell survival, inflammation and metabolism. Herein, the neuroprotective roles of PF in the models of middle cerebral artery occlusion (MCAO) followed by reperfusion in rats and N-methyl-d-aspartic acid (NMDA)-induced excitotoxicity in primary hippocampal neurons were investigated. Moreover, we attempted to confirm the hypothesis that its protection effect is via the modulation of the Ca2+/CaMKI)/CREB signaling pathway. In this study, PF not only significantly decreased neurological deficit scores and infarct volume in vivo, but also improved neurons' cell viability, and inhibited neurons' apoptosis and intracellular Ca2+ concentration in vitro. Furthermore, PF significantly up-regulated p-CREB and p-CaMKII, and down-regulated calmodulin (CaM) in vivo and in vitro. The results indicate that the protective effect of PF on cerebral ischemia reperfusion injury is possible through regulating the Ca2+/CaMKII/CREB signaling pathway.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Glucósidos/administración & dosificación , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Monoterpenos/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Daño por Reperfusión/tratamiento farmacológico , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Glucósidos/farmacología , Hipocampo/efectos de los fármacos , Infarto de la Arteria Cerebral Media/etiología , Infarto de la Arteria Cerebral Media/metabolismo , Monoterpenos/farmacología , N-Metilaspartato/efectos adversos , Fármacos Neuroprotectores/farmacología , Ratas , Daño por Reperfusión/etiología , Daño por Reperfusión/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA