Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Deliv Transl Res ; 7(4): 529-543, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28429276

RESUMEN

Development of highly concentrated formulations of protein and peptide drugs is a major challenge due to increased susceptibility to aggregation and precipitation. Numerous drug delivery systems including implantable and wearable controlled-release devices require thermally stable formulations with high concentrations due to limited device sizes and long-term use. Herein we report a highly concentrated insulin gel formulation (up to 80 mg/mL, corresponding to 2200 IU/mL), stabilized with a non-ionic amphiphilic triblock copolymer (i.e., Pluronic F-127 (PF-127)). Chemical and physical stability of insulin was found to be improved with increasing polymer concentration, as evidenced by reduced insulin fibrillation, formation of degradation products, and preserved secondary structure as measured by HPLC and circular dichroism spectroscopy, respectively. This formulation exhibits excellent insulin stability for up to 30 days in vitro under conditions of continuous shear at 37 °C, attributable to the amphiphilic properties of the copolymer and increased formulation viscosity. The mechanism of stabilizing insulin structure by PF-127 was investigated by coarse-grained molecular dynamics (CG-MD), all-atom MD, and molecular docking simulations. The computation results revealed that PF-127 could reduce fibrillation of insulin by stabilizing the secondary structure of unfolded insulin and forming hydrophobic interaction with native insulin. The gel formulations contained in microfabricated membrane-reservoir devices released insulin at a constant rate dependent on both membrane porosity and copolymer concentration. Subcutaneous implantation of the gel formulation-containing devices into diabetic rats resulted in normal blood glucose levels for the duration of drug release. These findings suggest that the thermally stable gel formulations are suitable for long-term and implantable drug delivery applications.


Asunto(s)
Hipoglucemiantes , Insulina , Poloxámero , Animales , Glucemia/análisis , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/uso terapéutico , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Implantes de Medicamentos , Liberación de Fármacos , Estabilidad de Medicamentos , Geles/administración & dosificación , Geles/química , Geles/uso terapéutico , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Insulina/administración & dosificación , Insulina/química , Insulina/uso terapéutico , Masculino , Microtecnología , Simulación de Dinámica Molecular , Poloxámero/administración & dosificación , Poloxámero/química , Poloxámero/uso terapéutico , Ratas Sprague-Dawley , Temperatura
2.
Diabetes Technol Ther ; 17(4): 255-67, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25671341

RESUMEN

An implantable, glucose-responsive insulin delivery microdevice was reported previously by our group, providing rapid insulin release in response to hyperglycemic events and efficacy in vivo over a 1-week period when implanted intraperitoneally in rats with diabetes. Herein, we focused on the improvement of the microdevice prototype for long-term glycemic control by subcutaneous (SC) implantation, which allows for easy retrieval and replacement as needed. To surmount the strong immune response to the SC implant system, the microdevice was treated by surface modification with high-molecular-weight polyethylene glycol (PEG). In vitro glucose-responsive insulin release, in vivo efficacy, and biocompatibility of the microdevice were studied. Modification with 20-kDa PEG chains greatly reduced the immune response without a significant change in glucose-responsive insulin release in vitro. The fibrous capsule thickness was reduced from approximately 1,000 µm for the untreated devices to 30-300 µm for 2-kDa PEG-treated and to 30-50 µm for 20-kDa PEG-treated devices after 30 days of implantation. The integrity of the glucose-responsive bioinorganic membrane and the resistance to acute and chronic immune response were improved with the long-chain 20-kDa PEG brush layer. The 20-kDa PEG-treated microdevice provided long-term maintenance of euglycemia in a rat model of diabetes for up to 18 days. Moreover, a consistent rapid response to short-term glucose challenge was demonstrated in multiple-day tests for the first time on rats with diabetes in which the devices were implanted. The improvement of the microdevice is a promising step toward a long-acting insulin implant system for a true, closed-loop treatment of diabetes.


Asunto(s)
Glucemia/análisis , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Bombas de Infusión Implantables , Insulina de Acción Prolongada/administración & dosificación , Animales , Materiales Biocompatibles , Glucemia/efectos de los fármacos , Diseño de Equipo , Infusiones Subcutáneas , Masculino , Polietilenglicoles/uso terapéutico , Ratas , Ratas Sprague-Dawley , Tensoactivos/uso terapéutico , Resultado del Tratamiento
3.
Biomaterials ; 47: 51-61, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25682160

RESUMEN

Implantation of a medical implant within the body inevitably triggers a host inflammatory response that negatively impacts its function and longevity. Nevertheless, the degree and severity of this response may be reduced by selecting appropriate materials, implant geometry, surface topography and surface treatment. Here we demonstrate a strategy to improve the biocompatibility of a chemically-driven closed-loop insulin delivery implant. A microfabricated microporous, poly(ethylene glycol)-grafted polydimethylsiloxane membrane was placed on top of the glucose-responsive insulin release plug of the implant. Implant biocompatibility was assessed in healthy rats while implant function was evaluated in a type 1 diabetic rat model. The microporous membrane with a small distance to the plug provided a geometric barrier to inflammatory cell migration and prevented leukocyte-mediated degradation of the plug for at least 30 days. Membrane-protected devices elicited a significantly milder inflammatory response and formation of a well-defined fibrous capsule at the device opening compared to unprotected devices. The device's glucose-responsiveness was nearly unchanged, although the insulin release rate decreased with decreasing pore size. The microporous membrane improved biocompatibility and prolonged in vivo efficacy of the implant by ∼3-fold. This work suggests the importance of implant design in modulating inflammatory response and thereby extending the functional duration of the implant.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Sistemas de Infusión de Insulina , Insulina/administración & dosificación , Microtecnología/métodos , Animales , Materiales Biocompatibles/química , Glucemia/análisis , Catalasa/química , Modelos Animales de Enfermedad , Diseño de Fármacos , Fibrosis , Glucosa/química , Inflamación/metabolismo , Masculino , Polímeros/química , Ratas , Ratas Sprague-Dawley , Estreptozocina/química
4.
Lab Chip ; 12(14): 2533-9, 2012 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-22565220

RESUMEN

We have developed glucose-responsive implantable microdevices for closed-loop delivery of insulin and conducted in vivo testing of these devices in diabetic rats. The microdevices consist of an albumin-based bioinorganic membrane that utilizes glucose oxidase (GOx), catalase (CAT) and manganese dioxide (MnO(2)) nanoparticles to convert a change in the environmental glucose level to a pH stimulus, which regulates the volume of pH-sensitive hydrogel nanoparticles and thereby the permeability of the membrane. The membrane is integrated with microfabricated PDMS (polydimethylsiloxane) structures to form compact, stand-alone microdevices, which do not require tethering wires or tubes. During in vitro testing, the microdevices showed glucose-responsive insulin release over multiple cycles at clinically relevant glucose concentrations. In vivo, the microdevices were able to counter hyperglycemia in diabetic rats over a one-week period. The in vitro and in vivo testing results demonstrated the efficacy of closed-loop biosensing and rapid response of the 'smart' insulin delivery devices.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Portadores de Fármacos/química , Insulina/administración & dosificación , Técnicas Analíticas Microfluídicas/instrumentación , Animales , Catalasa/química , Catalasa/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Dimetilpolisiloxanos/química , Glucosa/metabolismo , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Concentración de Iones de Hidrógeno , Compuestos de Manganeso/química , Membranas Artificiales , Nanopartículas del Metal/química , Técnicas Analíticas Microfluídicas/métodos , Óxidos/química , Ratas , Albúmina Sérica/química , Albúmina Sérica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...