Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Thromb Res ; 136(6): 1310-7, 2015 Dec.
Article En | MEDLINE | ID: mdl-26553017

INTRODUCTION: Thromboxane A2 (TXA2) can induce the platelet aggregation and lead to thrombosis. This will cause the low-reflow phenomenon after ischemic stroke and aggravate the damage of brain issues. Therefore, it is potential to develop the drugs inhibiting TXA2 pathway to treat cerebral ischemia. AIM: This study aims to prove the protective effect of N2 (4-(2-(1H-imidazol-1-yl) ethoxy)-3-methoxybenzoic acid) on focal cerebral ischemia and reperfusion injury through platelet aggregation inhibition. MATERIALS AND METHODS: Middle cerebral artery occlusion/reperfusion (MCAO/R) is used as the animal model. Neurological deficit score, Morris water maze, postural reflex test, Limb-use asymmetry test, infarct volume, and water content were performed to evaluate the protective effect of N2 in MCAO/R rats. 9, 11-dieoxy-11α, 9α-methanoepoxyprostaglandin F2α (U46619) or adenosine diphosphate (ADP) was used as the inducer of platelet aggregation. RESULTS AND CONCLUSIONS: N2 can improve the motor function, learning and memory ability in MCAO/R rats while reducing the infarct volume. N2 can inhibit TXA2 formation but promote PGI2, and can inhibit platelet aggregation induced by U46619 and ADP. Further, N2 inhibits thrombosis with a minor adverse effect of bleeding than Clopidogrel. In conclusion, N2 can produce the protective effect on MCAO/R brain injury through inhibiting TXA2 formation, platelet aggregation and thrombosis.


Brain Ischemia/drug therapy , Platelet Aggregation/drug effects , Stroke/drug therapy , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/chemistry , Adenosine Diphosphate/chemistry , Animals , Arteriovenous Shunt, Surgical , Blood Coagulation , Brain/pathology , Edema/pathology , Enzyme-Linked Immunosorbent Assay , Epoprostenol/chemistry , Female , Imidazoles/chemistry , Male , Maze Learning , Rats , Rats, Sprague-Dawley , Thrombosis/physiopathology , Thromboxane A2/chemistry , Vanillic Acid/analogs & derivatives , Vanillic Acid/chemistry
2.
Neuropharmacology ; 95: 12-21, 2015 Aug.
Article En | MEDLINE | ID: mdl-25725335

Ischemic stroke is the third leading cause of death and the main reason for severe disabilities in the world today. N2, 4 - (2 - (1H - imidazol - 1 - yl) ethoxy) - 3 - methoxybenzoic acid is considered as a novel potent agent for cerebral ischemia due to its effect in preventing neuronal cell death after ischemic stroke. In the present study, we investigated the post-ischemic neuroprotective effect of N2 and its underlying mechanisms. Using a MCAO rat model, we found that N2 reversed brain infarct size, reduced cerebral edema and decreased the neurological deficit score significantly. Moreover, N2 diminished TUNEL positive cells, down-regulated bax expression and up-regulated bcl-2 expression notably. In addition, we evaluated the oxygen glucose deprivation/reoxygenation (OGD/R) injury induced neuron cell death in rat primary cortical neuron and assessed the neuroprotective effect of our drug. N2 increased cell viability, ameliorated neuron cell injury by decreasing LDH activity, and inhibited cell apoptotic rate while suppressed apoptotic signaling via inhibiting the bax expression, and elevating the bcl-2 expression. Furthermore, the neuroprotective effect of N2 was associated with the PI3K/Akt pathway which was proved by the use of PI3K inhibitor LY294002. The combination of our findings disclosed that N2 can be used as an effective neuroprotective agent for ischemic stroke due to its significant effect on preventing neuronal cell death after cerebral ischemia both in vivo and in vitro and the effectiveness was dose dependent.


Brain Ischemia/drug therapy , Brain/drug effects , Imidazoles/pharmacology , Neuroprotective Agents/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Vanillic Acid/analogs & derivatives , Animals , Apoptosis/drug effects , Apoptosis/physiology , Brain/enzymology , Brain/pathology , Brain Ischemia/enzymology , Brain Ischemia/pathology , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Disease Models, Animal , Infarction, Middle Cerebral Artery , Male , Neurons/drug effects , Neurons/enzymology , Neurons/pathology , Rats, Sprague-Dawley , Signal Transduction/drug effects , Stroke/drug therapy , Stroke/enzymology , Stroke/pathology , Vanillic Acid/pharmacology , bcl-2-Associated X Protein/metabolism
3.
Pharmacol Biochem Behav ; 124: 458-65, 2014 Sep.
Article En | MEDLINE | ID: mdl-24955863

Thromboxane A2 (TXA2) promotes ischemic stroke injury and has strong effects in vascular contraction and vascular endothelial cell dysfunction. Agents that reduce TXA2 production have potential for ameliorating neural injury in ischemic stroke. Thromboxane synthetase (TXS) is essential for TXA2 production, and TXS inhibitors have been developed as drugs for the prevention and treatment of stroke. However, ozagrel, a typical TXS inhibitor currently in clinical use, must be delivered via intravenous injection (I.V.). N2, 4-(2-(1H-imidazol-1-yl) ethoxy)-3-methoxybenzoate, is a potential thromboxane synthetase (TXS) inhibitor, which is being developed as an orally available formulation. The aim of this study was to investigate the effects of N2 on focal cerebral ischemia-reperfusion injury and related mechanisms. Neurological deficits, a Y-maze test and infarct volume were measured to evaluate the effects of N2 post-treatment on middle cerebral artery occlusion (MCAO)-induced ischemia/reperfusion (I/R) injury in rats. Furthermore, the influence of N2 on U46619-induced rat aorta contraction was investigated ex vivo. Moreover, we investigated the protective effects of N2 on rat brain microvessel endothelial cells (RBMECs) in hypoxia/deoxygenating (H/R) induced by Na2S2O4 in vitro. Cell viability and TXA2 biosynthesis were measured by 3-(4, 5-dimethylthiazol-2-yl)- 195 2, 5-diphenyltetrazolium bromide (MTT) and enzyme-linked immunosorbent assay (ELISA) assays, respectively. The results showed that N2 treatment effectively improves performance in neurological deficit and the Y-maze test and reduces the infarct volume in I/R rats. U46619-induced rat aorta contraction was inhibited by N2 ex vivo. Furthermore, N2 incubation improved the morphology of RBMECs, increased cell viability, and suppressed TXA2 production by inhibiting TXS during H/R damage. In summary, this study demonstrated that N2 was neural protective in focal cerebral I/R injury, which might be associated with the effects of N2 on endothelium protection and vascular contraction inhibition. In depth, the mechanisms underlying this phenomenon might be the influence of N2 on TXA2 production targeting TXS.


Brain Ischemia/pathology , Imidazoles/pharmacology , Neuroprotective Agents/pharmacology , Stroke/pathology , Thromboxane A2/biosynthesis , Vanillic Acid/analogs & derivatives , Animals , Brain Ischemia/metabolism , In Vitro Techniques , Male , Rats , Rats, Sprague-Dawley , Stroke/metabolism , Vanillic Acid/pharmacology
4.
Thromb Res ; 133(4): 610-5, 2014 Apr.
Article En | MEDLINE | ID: mdl-24525312

INTRODUCTION: Thromboxane A2 (TXA2) induces platelet aggregation and vasoconstriction, and agents that inhibit TXA2 production or interaction with receptors may exert potential application in stroke therapy. AIM: To illustrate the platelet aggregation antagonistic and endothelial protective effect of (E) - 3 - (3 - methoxy - 4 - ((3, 5, 6 - trimethylpyrazin - 2 - yl) methoxy) phenyl) sodium acrylate (MC-002) through TXA2 inhibition and underline mechanisms. MATERIALS AND METHODS: Platelets aggregation and thoracic aorta ring contraction of rabbits were induced by U46619. Human umbilical vein endothelial cells (HUVECs) were further applied to explore the protective effect of MC-002 on endothelium when exposed to tumor necrosis factor - α (TNF-α). MTT method was used to assess cell damage, and ELISA analysis was exerted to estimate nitrogen monoxide (NO), endothelin-1 (ET-1), thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6-keto-PGF1α) releasing. Fluorescence spectrophotometry was conducted to determine intracellular calcium concentration ([Ca(2+)]i), and western blotting method was applied to evaluate the protein expressions of intracellular adhesion molecule-1 (ICAM-1), P-selectin and nuclear factor-kappa B (NF-κB). RESULTS AND CONCLUSIONS: TXA2 analog U46619 mediated obvious platelet aggregation and vasoconstriction. MC-002 inhibited platelet aggregation through administration in vivo and incubation with platelet in vitro, and relaxed aorta ring in endothelium dependent manner. MC-002 alleviated cell damage, [Ca(2+)]i overload, ET-1 overexcretion and TXB2 activation, but improved NO availability reduction in HUVECs treated with TNF-α. Furthermore, MC-002 downregulated ICAM-1, P-selectin and NF-κB overexpression induced by TNF-α. In conclusion, MC-002 exerted antiplatelet aggregation effect through TXA2 inhibition and relieved inflammatory injury of endothelial cells through NF-κB signal pathway.


Prostaglandin Antagonists/pharmacology , Pyrans/pharmacology , Thromboxane A2/antagonists & inhibitors , Acrylates/pharmacology , Animals , Humans , Male , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Rabbits , Random Allocation , Receptors, Thromboxane A2, Prostaglandin H2/antagonists & inhibitors , Receptors, Thromboxane A2, Prostaglandin H2/metabolism , Thromboxane A2/metabolism
...