Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ethnopharmacol ; 329: 118145, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38582153

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Kai-Xin-San (KXS) is a classic famous prescription that has been utilized for centuries to address dementia. New investigations have shown that the anti-dementia effect of KXS is connected with improved neuroinflammation. Nevertheless, the underlying mechanism is not well elucidated. AIM OF THE STUDY: We propose to discover the ameliorative impact of KXS on Alzheimer's disease (AD) and its regulatory role on the mitochondrial autophagy-nod-like receptor protein 3 (NLRP3) inflammasome pathway. MATERIALS AND METHODS: The Y maze, Morris water maze, and new objection recognition tests were applied to ascertain the spatial learning and memory capacities of amyloid precursor protein/presenilin 1 (APP/PS1) mice after KXS-treatment. Meanwhile, the biochemical indexes of the hippocampus were detected by reagent kits. The pathological alterations and mitochondrial autophagy in the mice' hippocampus were detected utilizing hematoxylin and eosin (H&E), immunohistochemistry, immunofluorescence staining, and transmission electron microscopy. Besides, the PTEN-induced putative kinase 1 (PINK1)/Parkin and NLRP3 inflammasome pathways protein expressions were determined employing the immunoblot analysis. RESULTS: The results of behavioral tests showed that KXS significantly enhanced the AD mice' spatial learning and memory capacities. Furthermore, KXS reversed the biochemical index levels and reduced amyloid-ß protein deposition in AD mice brains. Besides, H&E staining showed that KXS remarkably ameliorated the neuronal damage in AD mice. Concurrently, the results of transmission electron microscopy suggest that KXS ameliorated the mitochondrial damage in microglia and promoted mitochondrial autophagy. Moreover, the immunofluorescence outcomes exhibited that KXS promoted the expression of protein 1 light chain 3B (LC3B) associated with microtubule and the generation of autophagic flux. Notably, the immunofluorescence co-localization results confirmed the presence of mitochondrial autophagy in microglia. Finally, KXS promoted the protein expressions of the PINK1/Parkin pathway and reduced the activation of NLRP3 inflammasome. Most importantly, these beneficial effects of KXS were attenuated by the mitochondrial autophagy inhibitor chloroquine. CONCLUSION: KXS ameliorates AD-related neuropathology and cognitive impairment in APP/PS1 mice by enhancing the mitochondrial autophagy and suppressing the NLRP3 inflammasome pathway.


Asunto(s)
Enfermedad de Alzheimer , Autofagia , Disfunción Cognitiva , Medicamentos Herbarios Chinos , Inflamasomas , Ratones Transgénicos , Mitocondrias , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Ratones , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Masculino , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Modelos Animales de Enfermedad , Presenilina-1/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Transducción de Señal/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Ratones Endogámicos C57BL , Proteínas Quinasas
2.
J Drug Target ; 32(5): 529-543, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537662

RESUMEN

As a vitro absorption model, the Caco-2 cells originate from a human colon adenocarcinomas and can differentiate into a cell layer with enterocyte-like features. The Caco-2 cell model is popularly applied to explore drug transport mechanisms, to evaluate the permeability of drug and to predict the absorption of drugs or bioactive substances in the gut. However, there are limitations to the application of Caco-2 cell model due to lack of a mucus layer, the long culture period and the inability to accurately simulate the intestinal environment. The most frequent way to expand the Caco-2 cell model and address its limitations is by co-culturing it with other cells or substances. This article reviews the culture methods and applications of 3D and 2D co-culture cell models established around Caco-2 cells. It also concludes with a summary of model strengths and weaknesses.


Asunto(s)
Técnicas de Cocultivo , Modelos Biológicos , Humanos , Células CACO-2 , Absorción Intestinal/fisiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Permeabilidad , Enterocitos/metabolismo
3.
J Microencapsul ; 41(3): 157-169, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38451031

RESUMEN

OBJECTIVE: To investigate the transdermal mechanisms and compare the differences in transdermal delivery of Sinomenine hydrochloride (SN) between solid lipid nanoparticles (SLN), liposomes (LS), and nanoemulsions (NE). METHODS: SN-SLN, SN-LS and SN-NE were prepared by ultrasound, ethanol injection and spontaneous emulsification, respectively. FTIR, DSC, in vitro skin penetration, activation energy (Ea) analysis were used to explore the mechanism of drug penetration across the skin. RESULTS: The particle size and encapsulation efficiency were 126.60 nm, 43.23 ± 0.48%(w/w) for SN-SLN, 224.90 nm, 78.31 ± 0.75%(w/w) for SN-LS, and 83.22 nm, 89.01 ± 2.16%(w/w) for SN-LS. FTIR and DSC showed the preparations had various levels of impacts on the stratum corneum's lipid structure which was in the order of SLN > NE > LS. Ea values of SN-SLN, SN-LS, and SN-NE crossing the skin were 2.504, 1.161, and 2.510 kcal/mol, respectively. CONCLUSION: SLN had a greater degree of alteration on the skin cuticle, which allows SN to permeate skin more effectively.


Asunto(s)
Morfinanos , Nanopartículas , Absorción Cutánea , Portadores de Fármacos/química , Administración Cutánea , Piel/metabolismo , Nanopartículas/química , Lípidos/química , Tamaño de la Partícula
4.
Pharm Dev Technol ; 29(2): 112-122, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38308442

RESUMEN

The aim of this study was to prepare a solid self-microemulsifying drug delivery system (S-SMEDDS) of cinnamaldehyde (CA) by spray drying technique to improve the oral bioavailability of CA. The preparation of CA S-SMEDDS with maltodextrin as the solid carrier, a core-wall material mass ratio of 1:1, a solid content of 20% (w/v), an inlet air temperature of 150 °C, an injection speed of 5.2 mL/min, and an atomization pressure of 0.1 MPa was determined by using the encapsulation rate as the index of investigation. Differential scanning calorimetry (DSC) revealed the possibility of CA being encapsulated in S-SMEDDS in an amorphous form. The in-vitro release showed that the total amount of CA released by S-SMEDDS was approximately 1.3 times higher than that of the CA suspension. Pharmacokinetic results showed that the relative oral bioavailability of CA S-SMEDDS was also increased to 1.6-fold compared to CA suspension. Additionally, we explored the mechanism of CA uptake and transport of lipid-soluble drugs CA by S-SMEDDS in a Caco-2/HT29 cell co-culture system for the first time. The results showed that CA S-SMEDDS uptake on the co-culture model was mainly an energy-dependent endocytosis mechanism, including lattice protein-mediated endocytosis and vesicle-mediated endocytosis. Transport experiments showed that CA S-SMEDDS significantly increased the permeability of CA in this model. These findings suggested that CA S-SMEDDS is an effective oral solid dosage form for increasing the oral bioavailability of lipid-soluble drug CA.


Asunto(s)
Acroleína/análogos & derivados , Sistemas de Liberación de Medicamentos , Secado por Pulverización , Humanos , Solubilidad , Disponibilidad Biológica , Células CACO-2 , Emulsiones/química , Sistemas de Liberación de Medicamentos/métodos , Lípidos , Administración Oral
5.
J Biomol Struct Dyn ; : 1-17, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345075

RESUMEN

Cassia twig is a dry twig of Cinnamomum cassia Presl, a Lauraceae plant. Astragalus L is one of the largest genuses of flowering plants in the Leguminosae family. Roots of A. membranaceus Bge. var. mongholicus (Bge.) Hsiao, A. membranaceus (Fisch.) Bge. Chinese herb couple refers to the matching of two herbs in pairs, mostly with synergistic effects or toxicity reduction. This Chinese herb couple (Cassia twig-Astragalus) come from the classic famous book "Zhang Xichun's book on Chinese herb couple", which is widely used to treat diabetes. Moreover, both Cassia twig and Astragalus belong to the homology of medicine and food. However, its mechanism is still unclear. The study identified the effective components of Cassia twig-Astragalus by UPLC-Q-TOF-MS/MS and investigated the mechanism of Cassia twig-Astragalus in treating diabetes by virtue of network pharmacology, molecular docking and experimental verification. Firstly, based on UPLC-Q-TOF-MS/MS and network pharmacology, a total of 10 active ingredients of Astragalus and 6 active ingredients of Cassia twig were screened, and a total of 13 key targets were obtained. There were 64 targets at the intersection of Cassia twig-Astragalus with diabetes, mainly including IL-17, TNF, NF-κß, AGE-RAGE signaling pathway, etc. It mainly involves the response of cells to insulin stimulation, the response to insulin and the positive regulation of cell adhesion. Secondly, molecular docking results showed that quercetin has good binding activities with AKT1 and TNF. Calycosin has good binding activities with AKT1, TNF and CAV1. Formononetin has good binding activities with TNF and IL-6. Isorhamnetin has good binding activities with AKT1, TNF and IL-6. Finally, the animal experiments showed that Cassia twig-Astragalus could improve the body weight, blood glucose and glucose tolerance in diabetic rats. After the intervention with Cassia twig-Astragalus, the inflammatory factors (IL-10, TNF-α, IL-6) were significantly improved in diabetic rats, which also effectively reduced TG and TC.Communicated by Ramaswamy H. Sarma.

6.
Mol Neurobiol ; 61(4): 2297-2312, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37874481

RESUMEN

Kai-Xin-San (KXS) is a classic famous prescription composed of Polygalae Radix, Ginseng Radix et Rhizoma, Acori Tatarinowii Rhizoma, and Poria. Clinically, KXS is effective in treating amnesia and regulating cognitive dysfunction of Alzheimer's disease (AD), whereas its mechanism of action is still unclear. In this study, the AD model rats were established by combining intraperitoneal injection of D-galactose (150 mg/kg/day) and intracerebral injection of Aß25-35 (10 µL) to investigate the meliorative effect of KXS on AD and explore its mechanism. After 1-month KXS treatment, Morris water maze test showed that different doses of KXS all improved the cognitive impairment of AD rats. The results of hematoxylin and eosin staining, Nissl staining, and Tunnel staining showed that the neuron injury in the hippocampal CA1 region of the AD rats was markedly improved after KXS treatment. Concurrently, KXS reversed the levels of biochemical indexes of AD rats. Furthermore, the protein expressions of Wnt1 and ß-catenin in KXS groups were remarkably increased, while the expressions of Bax and caspase-3 were significantly decreased. Besides, KXS-medicated serum reduced the levels of tumor necrosis factor-α, interleukin-1ß, and reactive oxygen species and regulated the protein expressions of ß-catenin, glycogen synthase kinase-3ß (GSK-3ß), p-GSK-3ß, Bax, and caspase-3 in Aß25-35-induced pheochromocytoma cells. Most importantly, this effect was attenuated by the Wnt inhibitor IWR-1. Our results suggest that KXS improves cognitive and memory function of AD rats, and its neuroprotective mechanism may be mediated through the Wnt/ß-catenin signaling pathway.


Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Ratas , Animales , Enfermedad de Alzheimer/metabolismo , Caspasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , beta Catenina/metabolismo , Vía de Señalización Wnt , Proteína X Asociada a bcl-2 , Modelos Animales de Enfermedad
7.
Clin Anat ; 36(7): 977-985, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37191299

RESUMEN

Rheumatoid arthritis (RA) is a recurrent chronic autoimmune disease, which is not only difficult to treat, but also has a great adverse impact on the physical and mental health of patients. The intestinal mucosa barrier has some relationship with RA and it consists of mechanical barrier, chemical barrier, immune barrier, and microflora barrier. It is a dynamic system that contributes to the stability of the intestinal environment by regulating the absorption of relevant substances from the lumen into the circulation, while limiting the passage of harmful substances. This article summarizes the connection between the intestinal mucosa barrier and RA, and proposes the role of relevant Chinese medicines on RA from the point of improving barriers, to provide new perspectives on the pathogenesis and therapeutic strategies of RA.


Asunto(s)
Artritis Reumatoide , Humanos , Artritis Reumatoide/tratamiento farmacológico , Mucosa Intestinal , Intestinos , Enfermedad Crónica
8.
J Pharm Sci ; 112(7): 1985-1996, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37088153

RESUMEN

PURPOSE: The aim of this study was to develop liquid crystal (LC) precursors to obtain novel long-acting analgesics for injection based on depot systems and compare the difference between the cubic and hexagonal precursors in delivering Diclofenac sodium (DS). METHODS: Diclofenac sodium liquid crystal precursor injections were prepared and characterized, followed by in vitro release, pharmacodynamic, and pharmacokinetic studies. RESULTS: The optimal formulations were prepared with a ratio of Phytantriol/ethanol/water as 76:19:5 for cubic LC precursors, and a ratio of Phytantriol/ethanol/water/Vitamine-E acetate as 72:18:5:5 for hexagonal, both loading various drug dosages (2.5%, 3.75% and 5%), respectively. Polarized light microscopy and small angle diffraction confirmed that the precursors were isotropic fluids and transformed into gels with Pn3m or HII framework in water. Rheological studies have shown that precursors belong to Newtonian fluids and gels to pseudoplastic fluids. The release showed that the DS in the commercial injection (DS-inj) was completely liberated within 6 h, whereas only 46.55% and 49.73% of the DS in 2.5% cubic precursors and 2.5% hexagonal precursors were freed, respectively. Pharmacodynamic studies have shown that cubic, hexagonal and DS-inj raised the pain threshold in mice by 169.4%, 157.3% and 113.79%, respectively. The mean retention times of DS in cubic and hexagonal were 3.16 and 2.67 times longer than DS-inj, respectively, according to pharmacokinetic results. CONCLUSION: In conclusion, cubic and hexagonal are both promising analgesic sustained release formulations. In addition, based only on the current comparison, cubic seems to have a better long-acting effect.


Asunto(s)
Cristales Líquidos , Ratones , Animales , Cristales Líquidos/química , Diclofenaco , Agua/química , Etanol/química , Analgésicos , Geles
9.
J Biomater Sci Polym Ed ; 34(14): 2021-2039, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37089114

RESUMEN

Primary dysmenorrhea is a common disease in women, and oral administration of Ibuprofen (IBU) is associated with first-pass effects and gastrointestinal irritation. Here, we developed ibuprofen-loaded hexagonal liquid crystal (IBU HLC) gel for transdermal administration. In this study, the structure of prepared IBU HLC was characterized using polarizing microscopey (PLM) and small angle X ray diffraction (SAXS). In vitro drug release behavior and percutaneous penetration were investigated, and drug transdermal behavior was observed by confocal laser scanning microscope (CLSM). Finally, the pharmacokinetic profile and tissue distribution were investigated after transdermal administration. The PLM and SAXS results showed that the inner structure of IBU HLC was hexagonal phase. Moreover, in vitro release, skin permeation and CLSM demonstrated that IBU HLC had an excellent sustained-release effect, and a good transdermal penetration effect accompanied by the combination of multiple percutaneous routes. Pharmacokinetic studies indicated that IBU entered the blood circulation through abdominal transdermal administration in small amounts, mainly entering the uterus, and had a certain targeting ability. In conclusion, the IBU HLC gel would be a promising sustained-release preparation for transdermal administration to relieve dysmenorrhea with a significant drug concentration in the uterus.


Asunto(s)
Ibuprofeno , Cristales Líquidos , Femenino , Humanos , Administración Cutánea , Dismenorrea/tratamiento farmacológico , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Útero
10.
Front Pharmacol ; 14: 1270836, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38205371

RESUMEN

Background: Kai-Xin-San (KXS) is one of the classic famous traditional Chinese medicine prescriptions for amnesia, which has been applied for thousands of years. Modern pharmacological research has found that KXS has significant therapeutic efficacy on nervous system diseases, which is related to its antioxidant activity. However, the antioxidant material basis and quality markers (Q-makers) of KXS have not been studied. Objective: The objective of this study is to explore the Q-makers of antioxidant activity of KXS based on spectrum-effect relationship. Methods: Specifically, the metabolites in KXS extracts were identified by UPLC-Q-Exactive Orbitrap MS/MS. The fingerprint profile of KXS extracts were established by high-performance liquid chromatography (HPLC) and seven common peaks were identified. Meanwhile, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) test was used to evaluate the free radical scavenging ability of KXS. The spectrum-effect relationship between its HPLC fingerprint and DPPH free radical scavenging activity was preliminarily examined by the Pearson correlation analysis, grey relation analysis (GRA), and orthogonal partial least squares discrimination analysis (OPLS-DA). Further, the antioxidant effect of KXS and its Q-makers were validated through human neuroblastoma (SH-SY5Y) cells experiment. Results: The results showed that 103 metabolites were identified from KXS, and the similarity values between HPLC fingerprint of twelve batches of KXS were greater than 0.900. At the same time, the results of Pearson correlation analysis showed that the peaks 8, 1, 14, 17, 18, 24, 16, 21, 15, 13, 6, 5, and 3 from KXS were positively correlated with the scavenging activity values of DPPH. Combined with the results of GRA and OPLS-DA, peaks 1, 3, 5 (Sibiricose A6), 6, 13 (Ginsenoside Rg1), 15, and 24 in the fingerprints were screen out as the potential Q-makers of KXS for antioxidant effect. Besides, the results of CCK-8 assay showed that KXS and its Q-makers remarkably reduced the oxidative damage of SH-SY5Y cells caused by H2O2. However, the antioxidant activity of KXS was decreased significantly after Q-makers were knocked out. Conclusion: In conclusion, the metabolites in KXS were successfully identified by UPLC-Q-Exactive Orbitrap MS/MS, and the Q-makers of KXS for antioxidant effect was analyzed based on the spectrum-effect relationship. These results are beneficial to clarify the antioxidant material basis of KXS and provide the quality control standards for new KXS products development.

11.
Pharm Dev Technol ; 27(10): 1038-1048, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36367964

RESUMEN

OBJECTIVE: The purpose of this experiment was to explore the effect of Solid lipid nanoparticles (SLNs) on improving the oral absorption and bioavailability of cinnamaldehyde (CA). METHODS: CA-SLNs were prepared by high-pressure homogenization and characterized by particle size, entrapment efficiency, and morphology, thermal behavior and attenuated total reflection Fourier transform infrared (ATR-FTIR). In vitro characteristics of release, stability experiments, cytotoxicity, uptake and transport across Caco-2 cell monolayer of CA-SLNs were studied as well. In addition, CA-SLNs underwent pharmacokinetic and gastrointestinal mucosal irritation studies in rats. RESULTS: CA-SLNs exhibited a spherical shape with a particle size of 44.57 ± 0.27 nm, zeta potential of -27.66 ± 1.9 mV and entrapment efficiency of 83.63% ± 2.16%. Differential scanning calorimetry (DSC) and ATR-FTIR confirmed that CA was well encapsulated. In vitro release of CA-SLNs displayed that most of the drug (90.77% ± 5%) was released in the phosphate buffer, and only a small amount of drug (18.55% ± 5%) was released in the HCl buffer. CA-SLNs were taken up by an energy-dependent, endocytic mechanism mediated by caveolae mediated endocytosis across Caco-2 cells. The CA permeation through Caco-2 cell was facilitated by CA-SLNs. The outcome of the gastrointestinal irritation test demonstrated that CA-SLNs had no irritation to the rats' intestines. Compared with CA dispersions, incorporation of SLNs increased the oral bioavailability of CA more than 1.69-fold. CONCLUSIONS: It was concluded that CA-SLNs improved the absorption across Caco-2 cell model and improved the oral administration bioavailability of CA in rats.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Humanos , Ratas , Animales , Portadores de Fármacos/química , Células CACO-2 , Lípidos/química , Disponibilidad Biológica , Nanopartículas/química , Tamaño de la Partícula , Administración Oral
12.
J Microencapsul ; 39(6): 539-551, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36190415

RESUMEN

To compare the difference between liposome (LP) and microemulsion (ME) in delivering ibuprofen (IBU) transdermally and explore relative mechanism. IBU-LP and IBU-ME were prepared by ethanol injection and spontaneous emulsification, respectively. The percutaneous delivery was evaluated using Franz diffusion cells. Fourier transform infra-red spectroscopy (FTIR), differential scanning calorimetry (DSC), activation energy (Ea), and confocal laser scanning microscopy (CLSM) were used to investigate the transdermal mechanism. The particle size and encapsulation efficiency were 228.00 ± 8.60 nm, 86.68 ± 1.43%(w/w) for IBU-LP, and 56.74 ± 7.11 nm, 91.08 ± 3.27%(w/w) for IBU-ME. Percutaneous study showed that formulations enhanced permeation and drug retention in the skin. FTIR and DSC showed that the permeation occurred due to the interaction of the formulations with the lipid bilayer and the protein. The decrease in Ea (1.506 and 0.939 kcal/mol) revealed that the stratum corneum (SC) lipid bilayers were significantly disrupted and this destructive effect of IBU-LP was stronger. IBU-LP was superior to IBU-ME in the aspects of transdermal delivery of IBU.


Asunto(s)
Ibuprofeno , Absorción Cutánea , Liposomas/metabolismo , Piel/metabolismo , Administración Cutánea , Membrana Dobles de Lípidos
13.
AAPS PharmSciTech ; 23(7): 261, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36131215

RESUMEN

Oral delivery is considered the preferred route of administration due to its convenience and favorable compliance. However, this delivery often faces difficulties, such as poor solubility, limited absorption, and undesirable stability, especially for some volatile oils. The aim of this study was to develop self-emulsifying drug delivery systems (SEDDS) containing cinnamaldehyde (CA) to overcome these shortcomings. The CA-SEDDS were spherical and smooth with an average size of 14.96 ± 0.18 nm. Differential scanning calorimetry (DSC) and attenuated total reflection by Fourier transform infrared (ATR-FTIR) showed that CA has been successfully loaded into SEDDS. The accumulative release of CA-SEDDS (73.39%) was approximately 2.14-fold that of free CA when using simulated intestinal fluid as the release medium. A scanning electron microscope was used to observe the mucus network structure. Rheological tests found that CA-SEDDS can appropriately enhance the viscosity of the mucus system. We found from tissue distribution studies that CA was more widely distributed in various tissues in the CA-SEDDS group compared to the free CA group. The cinnamaldehyde and cinnamon acid also accumulated more in various tissues in the CA-SEDDS group than in the free CA group, especially in the kidney. These findings hinted that SEDDS exhibited lower irritation, good release, and penetration, which demonstrated great potential for utilizing CA. Our research supports the rational implications of SEDDS in delivering similar volatile substances by improving the solubility, mucus penetration, and stability, resulting in excellent clinical efficacy.


Asunto(s)
Sistemas de Liberación de Medicamentos , Aceites Volátiles , Acroleína/análogos & derivados , Sistemas de Liberación de Medicamentos/métodos , Emulsionantes/química , Emulsiones/química , Moco , Solubilidad , Distribución Tisular
14.
J Food Biochem ; 46(10): e14307, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35780300

RESUMEN

The current investigation explores the possible mechanism of the microemulsion drug delivery system to improve the oral bioavailability of cinnamaldehyde (CA), an important food spice, from the perspective of the microemulsion-mucus system. The cinnamaldehyde microemulsion (CA-ME) was prepared by the water titration method combined with the pseudo-ternary phase diagram. The dynamic analysis was applied to detect the drug release in vitro. An intestinal mucosal injury test was conducted to evaluate the safety of CA-ME and drug absorption across the intestinal tract of rats was investigated through an Ussing chamber system. The rheology of blank mucus and drug-loaded mucus was investigated using a rheometer. The bioavailability of CA-ME in rats was evaluated through pharmacokinetic characteristics. The ratio of optimal prescription was Tween 80: 1,2-propanediol: vitamin E oil: CA: water = 24.3:4.8:5:7.5:58.4. The droplets were uniform in size and evenly dispersed. Rheological studies showed that the microemulsion-mucus system all exhibit pseudoplastic fluid behavior, and CA-ME increased the viscosity of the mucus to a certain extent. Compared with CA solution, CA-ME promoted the absorption of CA in various intestinal segments, especially the ileum. Pharmacokinetic experiments showed that the relative bioavailability of CA-ME was enhanced 2.5-fold higher than that of CA solution. ME as a carrier for lipophobic substances, may increase the viscosity of the intestine mucus system to obtain longer residue time and better absorption. PRACTICAL APPLICATIONS: In this study, in vitro absorption Ussing model was combined with rheological and pharmacokinetic analysis to systematically analyze the intestinal mucus mechanism of microemulsion to improve the oral bioavailability of cinnamic aldehyde. It laid the foundation for exploring the absorption and transport of drugs in the intestinal mucus barrier.


Asunto(s)
Polisorbatos , Propilenglicol , Acroleína/análogos & derivados , Administración Oral , Animales , Sistemas de Liberación de Medicamentos/métodos , Emulsiones/química , Moco , Ratas , Solubilidad , Vitamina E , Agua
15.
Int J Pharm ; 614: 121461, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35026310

RESUMEN

Self-emulsifying drug delivery systems (SEDDS) have potential applications in the delivery of hydrophobic components. Oral drugs are readily captured and cleared by intestinal mucus, a natural barrier that covers the mucosal epithelium and prevents the entry of foreign substances. In this study, we investigated for the first time the ability of SEDDS to deliver the lipophilic aldehyde cinnamaldehyde (CA-SEDDS) in rat mucus, mucin solution, Caco-2 and Caco-2/HT29 co-culture monolayer systems. CA-SEDDS was characterized by particle size, Zeta potential and the logDSEDDS/release medium. The capacity of CA-SEDDS to enhance mucus permeability was investigated in rat intestinal mucus gel and mucin solution with the period of in 12 h by Transwell® diffusion. We evaluated the potential of CA-SEDDS delivery of CA in a co-culture system of absorptive Caco-2 and mucus-secreting HT29 cells. CA-SEDDS exhibited excellent mucus permeability in mucus and mucin solutions, 5.1- and 2.8-fold higher than the free CA group, respectively. CA-SEDDS penetration increased by 2.5-fold compared with free CA when using the mucus-secreting co-culture cell model as a barrier. The relative oral bioavailability of CA-SEDDS was 242% compared to CA without formulation. These findings suggest that SEDDS exhibited good release and superior mucus permeability, displaying great potential for the future of hydrophobic oral applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Moco , Acroleína/análogos & derivados , Animales , Células CACO-2 , Técnicas de Cocultivo , Emulsiones , Humanos , Ratas
16.
AAPS PharmSciTech ; 23(1): 36, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34951001

RESUMEN

The purpose of this study was to design an in situ liquid crystal gel (ISLG) as an ophthalmic drug delivery system for dexamethasone (DEX) to enhance its eye retention and ocular bioavailability. The in situ liquid crystal gels (ISLGs) were prepared using a phytantriol/PEG400/water (65:30:5, w/w) ternary system. Polarized light microscope (PLM), small-angle X-ray scattering (SAXS), and rheology analysis confirmed that the internal structure of the preparations was Pn3m cubic phase liquid crystal gels with pseudoplastic fluid properties. Meanwhile, in vitro release behavior of the preparations conforms to the Higuchi equation. Corneal penetration experiments showed that compared with DEX sodium phosphate eye drops, DEX-ISLGs(F2) produced a 5.45-fold increase in the Papp value, indicating a significant enhancement of corneal penetration. In addition, in vivo experiments have confirmed that the ISLGs have better biocompatibility and longer retention time in the cornea. Simultaneously, corneal hydration level, eye irritation experiments, and histological observations proved the safety of the preparations. Pharmacokinetic studies have shown that the ISLG could maintain the DEX concentration in aqueous humor for at least 12 h after administration, which significantly improves the bioavailability of the drug. Collectively, these results indicated that ISLG would be a potential drug carrier for the treatment of diabetic retinopathy (DR).


Asunto(s)
Cristales Líquidos , Administración Oftálmica , Córnea , Dexametasona , Sistemas de Liberación de Medicamentos , Geles , Soluciones Oftálmicas , Dispersión del Ángulo Pequeño , Difracción de Rayos X
17.
Drug Dev Ind Pharm ; 47(8): 1223-1234, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34779328

RESUMEN

PURPOSE: To develop a liquid crystal (LC) precursor that can be used as a novel vaginal delivery system for Itraconazole (ITZ) and evaluate its pharmacodynamics. METHODS: The LC precursor was prepared by using phytantriol (PYT) as lipid matrix and N, N-dimethylformamide (DMAC) as solvent. Swelling studies were performed to assess the phase conversion ability. The formulations were characterized by crossed polarized light microscopy (CPLM), small-angle X-ray scattering (SAXS). Moreover, the rheological and in vitro drug release behavior were investigated. Then the vaginal retention time of ITZ in the optimal prescription was evaluated. Finally, the pharmacodynamics studies of the ITZ-loaded LC precursor were performed in a mouse model of vulvovaginal candidiasis (VVC). RESULTS: The LC precursor could transform to LC gels after administration into the vagina. Based on PLM and SAXS, the LC gels, formed after phase-conversion, were cubic LC. The LC precursor was non-Newtonian, while the LC gels exhibited a pseudo-plastic fluid behavior. In vitro release results revealed that F2 (68.0%) had a higher cumulative drug release than that of F1 (59.17%) at 72 h. Most of the LC gels could be retained in the vagina of mice for 24-36 h. Pharmacodynamics studies showed that there was only mild inflammation or no inflammatory stimulation in the control group. The ITZ-loaded LC precursor significantly improved the symptoms of vaginitis in mice and had a better therapeutic effect than that of the positive control group. CONCLUSIONS: The ITZ-loaded LC precursor would be a promising formulation for vaginal drug delivery.


Asunto(s)
Itraconazol , Cristales Líquidos , Animales , Antifúngicos/química , Parto Obstétrico , Femenino , Geles , Itraconazol/química , Itraconazol/farmacología , Cristales Líquidos/química , Ratones , Embarazo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
18.
Int J Nanomedicine ; 16: 3725-3739, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34103913

RESUMEN

PURPOSE: Transarterial chemoembolization is the preferred treatment for patients with middle and advanced-stage hepatocellular carcinoma (HCC); however, most hepatic artery embolization agents have various disadvantages. The purpose of this study was to evaluate phytantriol-based liquid crystal injections for potential use in treatment of HCC. METHODS: Using sinomenine (SN) and 5-fluorouracil (5-FU) as model drugs, three precursor in situ liquid crystal injections based on phytantriol (P1, P2, and P3) were prepared, and their in vitro biocompatibility, anticancer activity, and drug release investigated, to evaluate their feasibility for use in treatment of HCC. The properties of the precursor injections and subsequent cubic liquid crystal gels were observed by visual and polarizing microscopy, in an in vitro gelation experiment. Biocompatibility was evaluated by in vitro hemolysis, histocompatibility, and cytotoxicity assays. RESULTS: Precursor injections were colorless liquids that formed transparent cubic liquid crystal gels on addition of excess water. The three precursor injections all caused slight hemolysis, without agglutination, and were mildly cytotoxic. Histocompatibility experiments showed that P1 had good histocompatibility, while P2 and P3 resulted in strong inflammatory responses, which subsequently resolved spontaneously. In vitro anti-cancer testing showed that SN and 5-FU inhibited HepG2 cells in a time- and concentration-dependent manner and had synergistic effects. Further, in vitro release assays indicated that all three preparations had sustained release effects, with cumulative release of >80% within 48 h. CONCLUSION: These results indicate that SN and 5-FU have synergistic inhibitory effects on HepG2 cells, which has not previously been reported. Moreover, we describe a biocompatible precursor injection, useful as a drug carrier for the treatment of liver cancer, which can achieve targeting, sustained release, synergistic chemotherapy, and embolization. These data indicate that precursor injections containing SN and 5-FU have great potential for use in therapy for liver cancer.


Asunto(s)
Fluorouracilo/uso terapéutico , Cristales Líquidos/química , Neoplasias Hepáticas/tratamiento farmacológico , Morfinanos/uso terapéutico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Muerte Celular , Portadores de Fármacos/química , Liberación de Fármacos , Sinergismo Farmacológico , Alcoholes Grasos/química , Fluorouracilo/farmacología , Geles , Hemólisis , Células Hep G2 , Humanos , Inyecciones , Morfinanos/farmacología , Ratas Sprague-Dawley , Agua/química
19.
J Chromatogr Sci ; 59(7): 606-617, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33969409

RESUMEN

OBJECTIVE: Sinomenii Caulis (QingFengTeng) and Ramulus Cinnamomi (GuiZhi) are traditional Chinese drugs that have been used for anti-inflammation. In this study, the team plans to find out the material basis of a Chinese herb combination composed of the two herbs with different ratios. METHODS: The extracts of the herbal compound with various ratios obtained from ethanol extraction were analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) and gas chromatography coupled mass spectrometry to identify the basic chemical compounds. Simultaneously, the contents of the eight main components (sinomenine, magnoflorine, laurifoline, dauricine, coumarin, cinnamyl alcohol, cinnamic acid and cinnamaldehyde) from herb formula were determined by gradient elution by high-performance liquid chromatography. Furthermore, the content of sinomenine and cinnamaldehyde were determined by isocratic elution, respectively. RESULTS: Eighteen compounds in the herb formula were identified by UHPLC-Q-TOF-MS. The components in the GuiZhi are mostly volatile oils and the kinds of compounds isolated from the formula in the ratio of 4:1 were the most. Wherein eight compounds were identified as the main detection targets in the content determination. CONCLUSION: The extraction rate of sinomenine in QingFengTeng was related to the proportion of GuiZhi in the drug pairs. Synchronously, the addition of sinomenine in different proportions also had some influence on the extraction of cinnamaldehyde in GuiZhi. Furthermore, the series of methods was successfully applied to the simultaneous determination of chemical compounds in different samples of QingFengTeng-GuiZhi decoction.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos , Cromatografía de Gases y Espectrometría de Masas/métodos , Acroleína/análogos & derivados , Acroleína/análisis , Acroleína/química , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/química , Morfinanos/análisis , Morfinanos/química , Aceites Volátiles/química
20.
Int J Pharm ; 599: 120415, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33647411

RESUMEN

Mucus is widely disseminated in the nasal cavity, oral cavity, respiratory tract, eyes, gastrointestinal tract, and reproductive tract to prevent the invasion of pathogenic bacteria and toxins. The mucus layer through its continuous secretion can prevent the passage of macromolecular substances such as pathogenic bacteria and toxins, thereby reducing the occurrence of inflammation. Without a doubt, mucus also hinders oral absorption. The physiological and biochemical properties of intestinal mucus and the different types of mucus barrier models need to be predominated. To find ways to increase the bioavailability of drugs in the future, this article summarizes mucus composition, barrier properties, mucus models, and mucoadhesive/mucopenetrating particles to highlight the information they can afford. Collectively, the review seeks to provide a state-of-the-art roadmap for researchers who must contend with this critical barrier to drug delivery.


Asunto(s)
Preparaciones Farmacéuticas , Disponibilidad Biológica , Difusión , Sistemas de Liberación de Medicamentos , Moco
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...