Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(40): 15232-15242, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37603422

RESUMEN

Breakpoint chlorination is prevalent in drinking water and potable reuse water treatment. Breakpoint chlorination enhances the formation of N-nitrosamines through reactions that form nitrosating agents. The most recent study suggests that nitroxyl (HNO) can react with free chlorine (HOCl) to form the nitrosyl chloride (ClNO) nitrosating agent but has not experimentally verified its importance in breakpoint chlorination. This study first assessed the formation of N-nitrosamines from model N-chloro-alkylamine precursors when they were added to a mixture of HOCl and HNO-derived nitrosating agents generated by chlorinating hydroxyurea. Results demonstrated negligible N-nitrosamine formation. Instead, we observed that the interaction of NCl3 with NHCl2 (total Cl2/total N molar ratio = 2.4-3:1) produced an intermediate capable of nitrosating N-chloro-alkylamines to N-nitrosamines at yields 8-fold higher to those observed in NHCl2 treatment alone, within a very short timescale (<3 min). We examined the stoichiometry of the reaction of NCl3 with NHCl2 using a UV-spectrum-based approach. Nitrosyl chloride was proposed as the key intermediate, likely formed alongside the reformation of NHCl2. Further isotopic experiments, byproduct measurements, and kinetic modeling supported the hypotheses. Modeling indicated that the reaction of NCl3 with NHCl2 explained ∼75% of NDMA formation during breakpoint chlorination. Because NCl3 is mainly derived from the reaction of HOCl with NHCl2, controlling NHCl2 (e.g., with additional treatment) is critical for minimizing nitrosamine formation in waters where breakpoint chlorination occurs.

2.
Environ Res ; 234: 116553, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37406722

RESUMEN

The ubiquitous and refractory benzophenone (BP)-type ultraviolet filters, which are also endocrine disruptors, were commonly detected in the aquatic matrix and could not be efficiently removed by conventional wastewater treatment processes, thus causing extensive concern. Herein, a novel ternary nanocomposite, P-g-CN/α-Bi2O3/WO3 (P-gBW), was successfully fabricated by mixing cocalcinated components and applied to the decomposition of BP-type ultraviolet filters. The dual-Z-scheme heterostructure of P-gBW enhances visible-light absorption, efficiently facilitates separation and mobility, and prolongs the lifetime of photoinduced charge carriers via double charge transfer mechanisms. The optimum 95 wt% P-gBW exhibited excellent photocatalytic activity, degrading 96% 4-hydroxy benzophenone (4HBP) within 150 min and 93% 2,2',4,4'-tetrahydroxybenzophenone (BP-2) within 100 min under visible-light illumination, respectively. The pseudo-first-order rate constant of 4HBP (1.15 h-1) was 6.8-, 3.1-, 3.3- and 2.2-fold higher than those of WO3, P-g-CN, α-Bi2O3, and P-g-CN/α-Bi2O3, respectively, while that of BP-2 (1.71 h-1) was 5.2-, 2.2-, 3.2- and 1.5-fold higher, respectively. The improved photocatalytic degradation was attributed to efficient photoinduced charge carrier separation and migration and prevented the recombination of electron holes, as verified by photoluminescence, transient photocurrent response, and electrochemical impedance spectroscopy. Trapping experiments, electron paramagnetic resonance, and band energy position indicated an efficient dual-Z-scheme heterostructure.


Asunto(s)
Benzofenonas , Luz , Iluminación , Espectroscopía de Resonancia por Spin del Electrón
3.
Phys Chem Chem Phys ; 25(17): 12165-12173, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37070738

RESUMEN

Nitrite (NO2-) is one of the common salts in aqueous aerosols, and its photolytic products, nitric oxide (NO) and hydroxyl radical (OH), have potential for use in the oxidation of organic matter, such as dissolved formaldehyde, methanediol (CH2(OH)2), which is regarded as the precursor of atmospheric formic acid. In this work, the simulation of UVA irradiation in an aqueous mixture of NaNO2/CH2(OH)2 was carried out via continuous exposure with a 365 nm LED lamp, and the reaction evolutions were probed by in situ and real-time infrared and Raman spectroscopy, which provided multiplexity in the identification of the relevant species and the corresponding reaction evolution. Although performing infrared absorption measurements in aqueous solution seemed impracticable due to the strong interference of water, the multiplexity of the vibrational bands of parents and products in the non-interfered infrared regimes and the conjunction with Raman spectroscopy still make it possible to perform in situ and real-time characterization of the photolytic reaction in the aqueous phase, supplementary to chromatographic approaches. During the 365 nm irradiation, NO2- and CH2(OH)2 gradually decreased, concomitant with the formation of nitrous oxide (N2O) and formate (HCOO-) in the early period and carbonate (CO32-) in the late period, as revealed by the vibrational spectra. The losses or the gains of the aforementioned species increased with increases in the concentration of CH2(OH)2 and the irradiation flux of the 365 nm UV light. The ionic product HCOO- was also confirmed by ion chromatography, but oxalate (C2O42-) was absent in the vibrational spectra and ion chromatogram. The reaction mechanism is reasonably proposed on the basis of the evolutions of the aforementioned species and the predicted thermodynamic favorableness.

4.
Water Res ; 233: 119738, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36858017

RESUMEN

Sunlight-induced photoirradiation of chlorine (sunlight/chlorine) can be observed in outdoor swimming pools and open-channel disinfection units for wastewater treatment. In this study, the degradation of ketamine, an environmentally persistent pharmaceutical, under sunlight irradiation in the presence of a low concentration of chlorine (1 mg/L as Cl2) was investigated to elucidate the evolution of reactive species and their contribution to ketamine removal. •OH dominates the initial stage of sunlight/chlorine; however, after chlorine depletion, reactions still progress with an observed rate constant (kobs = 7.6 ± 0.50 × 10-3 min-1) an order of magnitude higher than photolysis alone (kobs = 2.9 ± 0.15 × 10-4 min-1). When chlorine is depleted, O3 becomes the major reactant that degrades ketamine. High O3 yields were found in both sunlight/HOCl (12.5 ± 0.5% at pH 5) and sunlight/ClO- (10 ± 1% at pH 10) systems. At sub-µM levels, O3 resulted in substantial removal of ketamine, and even faster rates were observed in the presence of sunlight. A kinetic model was also established, and evaluate time-dependent concentration levels during sunlight/chlorine. The model simulation showed that the cumulative O3 concentration could reach 0.91 µM, and O3 contributed 31% ketamine removal during the sunlight/chlorine process. Primary and secondary amine functional groups were demonstrated to be the reaction sites of O3; other pharmaceuticals, such as atenolol and metoprolol, underwent similar phenomena. In addition, the experimental and model results further indicated that sunlight/ClO2- or ClO2 also participates in the degradation of ketamine with a minor role; trace amounts (below nM level) of ClO2- and ClO2 were estimated by the simulation.


Asunto(s)
Compuestos de Cloro , Ketamina , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Luz Solar , Cloruros , Desinfección/métodos , Purificación del Agua/métodos , Preparaciones Farmacéuticas , Óxidos
5.
J Hazard Mater ; 429: 128328, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35114455

RESUMEN

Rational design of nanocomposite electrode materials with high conductivity, activity, and mechanical strength is critical in electrocatalysis. Herein, freestanding, flexible heteronanocomposites were fabricated in situ by carbonizing electrospun fibers with TiO2 nanoparticles on the surface for electrocatalytic degradation of water pollutants. The carbonization temperature was observed as a dominant parameter affecting the characteristics of the electrodes. As the carbonization temperature increased to 1000 °C, the conductivity of the electrode was significantly enhanced due to the high degree of graphitization (ID/IG ratio 1.10) and the dominant rutile phase. Additionally, the formation of TiO2 protrusions and the C-Ti heterostructure were observed at 1000 °C, which contributed to increasing the electrocatalytic activity. When 1.5 V (vs. Ag/AgCl) was employed, electrocatalytic experiments using the electrode achieved 90% degradation of crystal violet and 10.9-87.5% for an array of micropollutants. The electrical energy-per-order (EEO) for the removal of crystal violet was 0.7 kWh/m3/order, indicative of low-energy requirement. The efficient electrocatalytic activity can be ascribed to the fast electron transfer and the strong ability to generate hydroxyl radicals. Our findings expand efforts for the design of highly conductive heteronanocomposites in a facile in situ approach, providing a promising perspective for the energy-efficient electrocatalytic degradation of water pollutants.

6.
Environ Sci Technol ; 56(4): 2593-2604, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35025487

RESUMEN

Conversion of potable reuse water utilities and drinking water utilities from a low-pressure UV/H2O2 (LPUV/H2O2) advanced oxidation process (AOP) to alternative AOPs in which oxidants can effectively absorb photons and rapidly generate radicals has attracted great interest. Herein, we propose a novel UVA/ClO2 AOP for different water treatment scenarios because of reduced photon absorption by the background matrix and high molar absorptivity for ClO2 at UVA wavelengths. While the photolysis of ClO2 produces •Cl + O2 or •ClO + O(3P) via distinct product channels, we determined the parameters needed to accurately model the loss of oxidants and the formation of byproducts and combined a kinetic model with experimental data to determine quantum yields (Φ). Modeling incorporating the optimized Φ simultaneously predicted oxidant loss and the formation of major products -HOCl, Cl-, and ClO3-. We also systematically investigated the removal of three contaminants exhibiting different radical reactivities, the formation of 35 regulated and unregulated halogenated disinfection byproducts (DBPs), DBP-associated toxicity, and N-acetylcysteine thiol reactivity in synthetic or authentic RO permeates/surface waters treated by different AOPs. The kinetic model developed in this study was used to optimize operating conditions to control undesired products and improve contaminant removal efficiency. The results indicate that UVA/ClO2 can outperform LPUV/H2O2 in terms of electrical energy per order of contaminant degradation, disinfection byproduct formation, and toxicity indices.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Compuestos de Cloro , Desinfección , Peróxido de Hidrógeno , Oxidantes , Oxidación-Reducción , Óxidos , Fotólisis , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
7.
Water Res ; 211: 118075, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35066259

RESUMEN

Chlorinated cyanurates, prepared by application of hypochlorite to cyanuric acid at different ratios, have been commonly employed for disinfection. Combining UV with chlorinated cyanurates (UV/Cl-cyanurates) can be a novel and effective advanced oxidation process (AOP) because (1) Cl-cyanurates structurally resemble chlorinated amides that feature low reactivity with radicals, and (2) Cl-cyanurates, which bear multiple -Cl, may exhibit high molar absorptivity at 254 nm due to red-shifting absorption. Those chemiphysical properties of Cl-cyanurates may facilitate oxidant photolysis rate and lower radical scavenging rates in an AOP, thereby increasing steady-state concentrations of radicals. In this study, UV spectra measured for Cl-cyanurates highlighted molar absorptivities at 254 nm (∼200 M-1cm-1) much higher than free chlorine or H2O2, while k•OH determined using competition kinetics suggests low •OH reactivity (<1.95 × 107 M-1s-1) for Cl-cyanurates. Photolysis of Cl-cyanurates forms •Cl (i.e., Cl-N cleavage), and •Cl converts to •OH; formation of •OH during a UV/Cl-cyanurates AOP was evaluated using terephthalate as a probe compound. Experiments systematically investigated the effects of pH, Cl2 dosage, and cyanuric concentration (three key factors affecting the equilibrium concentrations of chlorinated-cynaurate species) on the efficacy of removing three indicator contaminants by UV/Cl-cyanurates AOP. UV/Cl-cyanurates AOP conducted in phosphate buffers or authentic surface waters highlighted efficiencies up to 170% higher than UV/Cl2 AOP at neutral pH when the same dosage of oxidants was employed, and the presence of certain levels of background ammonia or chloramines further enhanced its performance. Transformation of cyanuric acid or Cl-cyanurates by reacting with radicals during a UV/Cl-cyanurates AOP treatment was minimum. Toxicity assay indicated that UV/Cl-cyanurates AOP treated water was comparable or less toxicity than UV/H2O2 or UV/Cl2 AOP treated water, and the initial cost estimate indicates UV/Cl-cyanurates AOP is potentially a cost-effective alternative AOP.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Cloro/análisis , Peróxido de Hidrógeno , Oxidación-Reducción , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
9.
Environ Sci Technol ; 54(19): 12593-12601, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32822532

RESUMEN

The UV/hydrogen peroxide (H2O2) advanced oxidation process (AOP) frequently employed to generate hydroxyl radical (•OH) to treat reverse osmosis permeate (ROP) in potable reuse treatment trains is inefficient, using only 10% of the H2O2. This study evaluated ·OH generation by electron transfer from a low-cost stainless steel cathode. In deionized water, the electrochemical system achieved 0.5 log removal of 1,4-dioxane, a benchmark for AOP validation for potable reuse, within 4 min using only 1.25 mg/L H2O2. Hydrogen peroxide and 1,4-dioxane degradations were maximized near -0.18 and + 0.02 V versus standard hydrogen electrode, respectively. Degradations of positively and negatively charged compounds were comparable to neutral 1,4-dioxane, indicating that degradation occurs by ·OH generation from neutral H2O2 and that electrostatic repulsion of contaminants from the electrode is not problematic. For ROP without chloramines, 0.5 log 1,4-dioxane removal was achieved in 6.7 min with 7 mM salts for ionic strength and 2.5 mg/L H2O2. For ROP with 1.4 mg/L as Cl2 chloramines, 0.5 log 1,4-dioxane removal was achieved in 13.2 min with 7 mM salts and 4.5 mg/L total H2O2 dosed in three separate injections in 5 min intervals. Initial estimates based on lab-scale electrochemical AOP treatment indicated that, except for the cost of salts, the electrochemical AOP featured lower reagent costs than the UV/H2O2 AOP but higher electricity costs that could be reduced by optimization of the electrochemical design.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Peróxido de Hidrógeno , Ósmosis , Oxidación-Reducción , Rayos Ultravioleta
10.
Water Res ; 164: 114939, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31408756

RESUMEN

Advanced oxidation using UV/free chlorine and UV/chloramines are being considered as alternatives to UV/H2O2 for treatment of reverse osmosis (RO) permeate in treatment trains for the potable reuse of municipal wastewater. This pilot-scale comparison of the three advanced oxidation processes (AOPs) evaluated three factors important for selecting among these alternatives. First, the study characterized the speciation of oxidants serving as the source of radicals within the AOPs to facilitate process modeling. Kinetic modeling that included consideration of the chloramines occurring in RO permeate accurately predicted oxidant speciation. Modeling of the UV/free chlorine AOP indicated that free chlorine is scavenged by reactions with ammonia and monochloramine in RO permeate, such that oxidant speciation can shift in favor of dichloramine over the short (∼30 s) timescale of AOP treatment. Second, the order of efficacy for degrading the target contaminant, 1,4-dioxane, in terms of minimizing UV fluence was UV/free chlorine > UV/H2O2 ≫ UV/chloramines. However, estimates indicated that the UV/chloramines and UV/H2O2 AOPs could be similar on a cost-effectiveness basis due to savings in reagent costs by the UV/chloramines AOP, provided the RO permeate featured >3 mg/L as Cl2 chloramines. Third, the study evaluated whether the use of chlorine-based oxidants within the UV/free chlorine and UV/chloramines AOPs enhanced disinfection byproduct (DBP) formation. Even after AOP treatment and chloramination, total halogenated DBP formation remained low at <15 µg/L for all three AOPs. DBP formation was similar between the AOPs, except that the UV/free chlorine AOP promoted haloacetaldehyde formation, while the UV/H2O2 and UV/chloramines AOPs followed by chloramination increased chloropicrin formation. However, total DBP formation on a toxic potency-weighted basis was similar among the AOPs, since haloacetonitriles and haloacetamides were the dominant contributors and did not differ significantly among the AOPs.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cloraminas , Cloro , Dioxanos , Desinfección , Peróxido de Hidrógeno , Oxidantes , Oxidación-Reducción , Rayos Ultravioleta
11.
Free Radic Biol Med ; 141: 475-482, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31349038

RESUMEN

Chronic inflammatory disorders are associated with biomolecular damage attributed partly to reactions with Reactive Oxygen Species (ROS), particularly hydroxyl radicals (•OH). However, the impacts of serum electrolytes on ROS-associated damage has received little attention. We demonstrate that the conversion of •OH to carbonate and halogen radicals via reactions with serum-relevant carbonate and halide concentrations fundamentally alters the targeting of amino acids and loss of enzymatic activity in catalase, albumin and carbonic anhydrase, three important blood proteins. Chemical kinetic modeling indicated that carbonate and halogen radical concentrations should exceed •OH concentrations by 6 and 2 orders of magnitude, respectively. Steady-state γ-radiolysis experiments demonstrated that serum-level carbonates and halides increased tyrosine, tryptophan and enzymatic activity losses in catalase up to 6-fold. These outcomes were specific to carbonates and halides, not general ionic strength effects. Serum carbonates and halides increased the degradation of tyrosines and methionines in albumin, and increased the degradation of histidines while decreasing enzymatic activity loss in carbonic anhydrase. Serum electrolytes increased the degradation of tyrosines, tryptophans and enzymatic activity in the model enzyme, ketosteroid isomerase, predominantly due to carbonate radical reactions. Treatment of a mutant ketosteroid isomerase indicated that preferential targeting of the active site tyrosine accounted for half of the total tyrosine loss. The results suggest that carbonate and halogen radicals may be more significant than •OH as drivers for protein degradation in serum. Accounting for the selective targeting of biomolecules by these daughter radicals is important for developing a mechanistic understanding of the consequences of oxidative stress.


Asunto(s)
Electrólitos/toxicidad , Radicales Libres/toxicidad , Radical Hidroxilo/toxicidad , Inflamación/sangre , Carbonatos/toxicidad , Catalasa/genética , Halógenos/toxicidad , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/patología , Cinética , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteolisis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua
12.
Environ Sci Technol ; 53(8): 4416-4425, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30889356

RESUMEN

Chloramines applied to control membrane biofouling in potable reuse trains pass through reverse osmosis membranes, such that downstream ultraviolet (UV)/H2O2 advanced oxidation processes (AOPs) are de facto UV/H2O2-chloramine AOPs. Current models for UV/chloramine AOPs, which use inaccurate chloramine quantum yields and ignore the fate of •NH2, are unable to simultaneously predict the loss of chloramines and contaminants, such as 1,4-dioxane. This study determined quantum yields for NH2Cl (0.35) and NHCl2 (0.75). Incorporating these quantum yields and the formation from •NH2 of the radical scavengers, •NO and NO2-, was important for simultaneously modeling the loss of chloramines, H2O2, and 1,4-dioxane in the UV/H2O2-chloramine AOP. Although the level of radical production was higher for the UV/H2O2-chloramine AOP than for the UV/H2O2 AOP, the UV/H2O2 AOP was at least 2-fold more efficient with respect to 1,4-dioxane degradation, because chloramines efficiently scavenged radicals. At low chloramine concentrations, the UV/chloramine AOP efficiency increased with an increase in chloramine concentration, as the level of radical production increased relative to that of radical scavenging by the dissolved organic carbon in RO permeate. However, the efficiency leveled out at higher chloramine concentrations as radical scavenging by chloramines offset the increased level of radical production. The level of 1,4-dioxane degradation was ∼30-50% lower for the UV/chloramine AOP than for the UV/H2O2-chloramine AOP when the concentration of residual chloramines in RO permeate was ∼50 µM (3.3 mg/L as Cl2). Initial cost estimates indicate that the UV/chloramine AOP using the residual chloramines in RO permeate could be a cost-effective alternative to the current UV/H2O2-chloramine AOP in some cases, because the savings in reagent costs offset the ∼30-50% reduction in 1,4-dioxane degradation efficiency.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cloraminas , Filtración , Peróxido de Hidrógeno , Oxidación-Reducción , Rayos Ultravioleta
13.
Environ Sci Technol ; 53(7): 3729-3738, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30811182

RESUMEN

Advanced treatment trains based on oxidation, biofiltration, and/or granular activated carbon (Ox/BAF/GAC) are an attractive alternative to those based on microfiltration, reverse osmosis, and advanced oxidation (MF/RO/AOP) for the potable reuse of municipal wastewater effluents, but their effluent quality is difficult to validate with respect to chemical contaminants. This study evaluated the sum of the concentrations of 46 disinfection byproducts (DBPs) after treatment by chlorine or chloramines weighted by metrics of toxic potency in 10 full- or pilot-scale reuse trains to estimate the DBP-associated toxicity of their effluents. These total toxicity-weighted DBP concentrations were compared to those measured in their local, conventional drinking waters as a benchmark for water quality receiving regulatory and widespread public acceptance. The results indicated that while the DBP-associated quality of MF/RO/AOP-based reuse waters can readily exceed that of drinking waters, that of Ox/BAF/GAC-based reuse waters can approach or exceed that of drinking waters, particularly when they are chloraminated. Unregulated, halogenated DBPs were the dominant contributors to the estimated DBP-associated toxicity. While RO/AOP treatment preferentially reduced the concentrations of the more toxic brominated DBP species, BAC and GAC treatment favored brominated DBP species by removing DOC but not bromide. Comparing the total toxicity-weighted DBP concentration between reuse and drinking waters provides drinking water as a rational benchmark for water quality comparison, explicitly recognizes that contaminants occur as mixtures, provides utilities flexibility in selecting the most efficient treatment trains to reduce estimated toxicity, and can be expanded to encompass new contaminants as toxic potency data become available.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Cloraminas , Desinfección
14.
Water Res ; 152: 215-225, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30677632

RESUMEN

Ozone and biological activated carbon (O3/BAC) is being considered as an alternative advanced treatment process to microfiltration and reverse osmosis (MF/RO) for the potable reuse of municipal wastewater. Similarly, the UV/free chlorine (UV/HOCl) advanced oxidation process (AOP) is being considered as an alternative to the UV/hydrogen peroxide (UV/H2O2) AOP. This study compared the performance of these alternative treatment processes for controlling N-nitrosamines and chloramine-reactive N-nitrosamine and halogenated disinfection byproduct (DBP) precursors during parallel, pilot-scale treatment of tertiary municipal wastewater effluent. O3/BAC outperformed MF/RO for controlling N-nitrosodimethylamine (NDMA), while MF/RO was more effective for controlling N-nitrosomorpholine (NMOR) and chloramine-reactive NDMA precursors. The UV/H2O2 and UV/HOCl AOPs were equally effective for controlling N-nitrosamines in O3/BAC effluent, but UV/HOCl was less effective for controlling NDMA in MF/RO effluent, likely due to the promotion of dichloramine under these conditions. MF/RO was more effective than O3/BAC for controlling chloramine-reactive halogenated DBP precursors on both a mass and toxicity-weighted basis. UV/H2O2 AOP treatment was more effective at controlling the toxicity-weighted chloramine-reactive DBP precursors for most halogenated DBP classes by preferentially degrading the more toxic brominated species. However, the total toxicity-weighted DBP precursor concentrations were similar for treatment by either AOP because UV/H2O2 AOP treatment promoted the formation of iodoacetic acid, which exhibits a very high toxic potency. The combined O3/BAC/MF/RO train was the most effective for controlling N-nitrosamines and the total toxicity-weighted DBP precursor concentrations with or without treatment by either AOP.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico , Cloro , Desinfección , Peróxido de Hidrógeno , Ósmosis , Aguas Residuales
15.
Chemosphere ; 221: 597-605, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30665089

RESUMEN

US EPA Method 521 employs activated carbon-based solid phase extraction (SPE) cartridges for analyzing N-nitrosamines. The analysis of N-nitrosamines and their chloramine-reactive and ozone-reactive precursors in nitrified municipal secondary effluent revealed the potential for NDMA to form as an artefact during the analysis. As samples passed through the SPE cartridge, the activated carbon mediated the reaction of nitrite with dimethylamine to form NDMA. The reaction was not significant with tertiary amines. Artefactual NDMA formation was important for nitrite concentrations >0.2 mg/L as N in the Biological Nitrogen Removal (BNR) process effluent. However, it is difficult to define a general threshold for nitrite concentrations, because the importance of the reaction also depends on secondary amine concentrations, which are usually poorly characterized. Pre-treatment of samples with sulfamic acid to destroy nitrite mitigated the artefact. This artefact did not affect NDMA analysis in a nitrified effluent from another facility, likely due to low dimethylamine concentrations. This artefact also did not affect the analysis of primary effluent, due to the lack of nitrite, or the analysis of other N-nitrosamines, likely due to the lack of their secondary amine precursors. Because chloramination does not significantly degrade nitrite, this artefact could affect the analysis of chloramine-reactive N-nitrosamine precursors. Because ozonation rapidly degrades nitrite, it should not affect the analysis of ozone-reactive precursors. However, ozonation at 0.8 mg ozone/mg dissolved organic carbon resulted in significant degradation of all N-nitrosamines, even though simultaneous NDMA formation from ozone-reactive precursors resulted in a net increase in NDMA concentration.


Asunto(s)
Nitrosaminas/análisis , Nutrientes/aislamiento & purificación , Purificación del Agua/métodos , Artefactos , Dimetilnitrosamina/análisis , Nitrógeno/análisis , Ozono/análisis , Extracción en Fase Sólida , Estados Unidos , United States Environmental Protection Agency , Contaminantes Químicos del Agua/análisis
16.
Environ Sci Technol ; 51(23): 13859-13868, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29121472

RESUMEN

Utilities incorporating the potable reuse of municipal wastewater are interested in converting from the UV/H2O2 to the UV/free chlorine advanced oxidation process (AOP). The AOP treatment of reverse osmosis (RO) permeate often includes the de facto UV/chloramine AOP because chloramines applied upstream permeate RO membranes. Models are needed that accurately predict oxidant photolysis and subsequent radical reactions. By combining radical scavengers and kinetic modeling, we have derived quantum yields for radical generation by the UV photolysis of HOCl, OCl-, and NH2Cl of 0.62, 0.55, and 0.20, respectively, far below previous estimates that incorporated subsequent free chlorine or chloramine scavenging by the •Cl and •OH daughter radicals. The observed quantum yield for free chlorine loss actually decreased with increasing free chlorine concentration, suggesting scavenging of radicals participating in free chlorine chain decomposition and even free chlorine reformation. Consideration of reactions of •ClO and its daughter products (e.g., ClO2-), not included in previous models, were critical for modeling free chlorine loss. Radical reactions (indirect photolysis) accounted for ∼50% of chloramine decay and ∼80% of free chlorine loss or reformation. The performance of the UV/chloramine AOP was comparable to the UV/H2O2 AOP for degradation of 1,4-dioxane, benzoate and carbamazepine across pH 5.5-8.3. The UV/free chlorine AOP was more efficient at pH 5.5, but only by 30% for 1,4-dioxane. At pH 7.0-8.3, the UV/free chlorine AOP was less efficient. •Cl converts to •OH. The modeled •Cl:•OH ratio was ∼20% for the UV/free chlorine AOP and ∼35% for the UV/chloramine AOP such that •OH was generally more important for contaminant degradation.


Asunto(s)
Cloraminas , Peróxido de Hidrógeno , Purificación del Agua , Cloro , Oxidación-Reducción , Rayos Ultravioleta , Contaminantes Químicos del Agua
17.
Environ Sci Technol ; 51(4): 2329-2338, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28092936

RESUMEN

Ozonation followed by biological activated carbon (O3/BAC) is being considered as a key component of reverse osmosis-free advanced treatment trains for potable wastewater reuse. Using a laboratory-scale O3/BAC system treating two nitrified wastewater effluents, this study characterized the effect of different ozone dosages (0-1.0 mg O3/mg dissolved organic carbon) and BAC empty bed contact times (EBCT; 15-60 min) on the formation after chlorination or chloramination of 35 regulated and unregulated halogenated disinfection byproducts (DBPs), 8 N-nitrosamines, and bromate. DBP concentrations were remarkably similar between the two wastewaters across O3/BAC conditions. Ozonation increased bromate, TCNM, and N-nitrosodimethylamine, but ozonation was less significant for other DBPs. DBP formation generally decreased significantly with BAC treatment at 15 min EBCT, but little further reduction was observed at higher EBCT where low dissolved oxygen concentrations may have limited biological activity. The O3/BAC-treated wastewaters met regulatory levels for trihalomethanes (THMs), haloacetic acids (HAAs), and bromate, although N-nitrosodimethylamine exceeded the California Notification Level in one case. Regulated THMs and HAAs dominated by mass. When DBP concentrations were weighted by measures of their toxic potencies, unregulated haloacetonitriles, haloacetaldehydes, and haloacetamides dominated. Assuming toxicity is additive, the calculated DBP-associated toxicity of the O3/BAC-treated chloraminated effluents were comparable or slightly higher than those calculated in a recent evaluation of Full Advanced Treatment trains incorporating reverse osmosis.


Asunto(s)
Desinfección , Aguas Residuales , Carbono , Nitrosaminas , Contaminantes Químicos del Agua , Purificación del Agua
18.
Environ Sci Technol ; 50(20): 11209-11217, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27632694

RESUMEN

Previous research has demonstrated that the reverse osmosis and advanced oxidation processes (AOPs) used to purify municipal wastewater to potable quality have difficulty removing low molecular weight halogenated disinfection byproducts (DBPs) and industrial chemicals. Because of the wide range of chemical characteristics of these DBPs, this study developed methods to predict their degradation within the UV/H2O2 AOP via UV direct photolysis and hydroxyl radical (•OH) reaction, so that DBPs most likely to pass through the AOP could be predicted. Among 26 trihalomethanes, haloacetonitriles, haloacetaldehydes, halonitromethanes and haloacetamides, direct photolysis rate constants (254 nm) varied by ∼3 orders of magnitude, with rate constants increasing with Br and I substitution. Quantum yields varied little (0.12-0.59 mol/Einstein), such that rate constants were driven by the orders of magnitude variation in molar extinction coefficients. Quantum chemical calculations indicated a strong correlation between molar extinction coefficients and decreasing energy gaps between the highest occupied and lowest unoccupied orbitals (i.e., ELUMO-EHOMO). Rate constants for 37 trihalomethanes, haloacetonitriles, haloacetaldehydes, halonitromethanes, haloacetamides, and haloacetic acids with •OH measured by gamma radiolysis spanned 4 orders of magnitude. Based on these rate constants, a quantitative structure-reactivity relationship model (Group Contribution Method) was developed which predicted •OH rate constants for 5 additional halogenated compounds within a factor of 2. A kinetics model combining the molar extinction coefficients, quantum yields and •OH rate constants predicted experimental DBP loss in a lab-scale UV/H2O2 AOP well. Highlighting the difficulty associated with degrading these DBPs, at the 500-1000 mJ/cm2 UV fluence applied in potable reuse trains, 50% removal would be achieved generally only for compounds with several -Br or -I substituents, mostly due to higher molar extinction coefficients.


Asunto(s)
Peróxido de Hidrógeno/química , Desinfección , Modelos Químicos , Oxidación-Reducción , Trihalometanos
19.
Environ Sci Technol ; 49(24): 14432-40, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26571080

RESUMEN

In vitro bioassays have indicated that haloacetamides and haloacetaldehydes exhibit the highest cytotoxicity among DBP classes. Previous research has focused on their potential formation from the chlorination or chloramination of aliphatic compounds, particularly nonaromatic amino acids, and acetaldehyde. The present work found that acetaldehyde served as a relatively poor precursor for trichloroacetaldehyde and dichloroacetamide, generally the most prevalent of the haloacetaldehydes and haloacetamides, during chlorination or chlorination/chloramination. Using phenolic model compounds, particularly 4-hydroxybenzoic acid, as models for structures in humic substances, we found significantly higher formation of trichloroacetaldehyde and dichloroacetamide from prechlorination followed by chloramination. Evaluation of the stoichiometry of chlorine reactions with 4-hydroxybenzoic acid and several intermediates indicated that seven successive Cl[+1] transfers, faster with chlorination than chloramination, can form 2,3,5,5,6-pentachloro-6-hydroxy-cyclohexa-2-ene-1,4-dione via chlorophenol and chlorobenzoquinone intermediates. Formation of 2,3,5,5,6-pentachloro-6-hydroxy-cyclohexa-2-ene-1,4-dione may serve as a key branching point, with chloramines promoting the formation of dichloroacetamide and chlorination promoting the formation of trichloroacetaldehyde. The behavior of 4-hydroxybenzoic acid with respect to yields of dichloroacetamide and trichloroacetaldehyde during chlorination followed by chloramination was similar to the behavior observed for model humic acids and several surface waters, suggesting that phenolic structures in natural waters may serve as the predominant, and common pool of precursors for haloacetamides and haloacetaldehydes. Experiments with natural waters indicated that the branching point is reached over prechlorine exposures (100-500 mg-min/L) relevant to drinking water utilities using chlorine as a primary disinfectant and chloramines for maintenance of a distribution system residual.


Asunto(s)
Desinfectantes/química , Agua Dulce/química , Lignina/química , Fenoles/química , Acetamidas/química , Hidrato de Cloral/análogos & derivados , Hidrato de Cloral/química , Cloraminas/química , Cloro/química , Clorofenoles/química , Desinfección/métodos , Agua Potable/química , Halogenación , Sustancias Húmicas , Parabenos/química , Espectrofotometría Ultravioleta
20.
J Hazard Mater ; 283: 218-26, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25279758

RESUMEN

During the chloramination of natural waters, both chloramines and dissolved organic nitrogen (DON) can serve as nitrogen sources for the formation of trichloronitromethane (TCNM) and dichloroacetonitrile (DCAN). The present study investigated the formation kinetics and precursor characteristics of TCNM and DCAN. (15)N-Isotopic monochloramination of the organic fractions produced both (15)N- and (14)N-DCAN and TCNM. Nitrogenous disinfection byproduct (N-DBP) formation, in which the nitrogen precursor originated from DON ((14)N-DCAN and (14)N-TCNM), followed a second-order reaction kinetics (k=3.2×10(-5) to 9.4×10(-5)µM(-1)h(-1)). The formation of N-DBP where the nitrogen atoms originated from chloramines (e.g. (15)N-DCAN and (15)N-TCNM) correlated linearly with chloramine exposure. The discrepancy in formation kinetics results in that the (14)N-DCAN concentrations were two to ten times higher than (15)N-DCAN in the beginning of the reaction (<12h). Possible rate equations are proposed in this study. The results of a model compound study support the results of the chloramination of natural waters. In addition, 4-hydroxybenzaldehyde, an oxidative product commonly found during chlorination/chloramination of natural organic matters, gave a 10-fold greater yield of DCAN than that produced from tyrosine; 4-hydroxybenzaldehyde is thus an important precursor in DCAN formation by chloramine incorporation during the chloramination of natural waters.


Asunto(s)
Acetonitrilos/análisis , Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Contaminantes Químicos del Agua/análisis , Desinfección , Cinética , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...