Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Infect Dis ; 8(8): 1521-1532, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35877936

RESUMEN

ß-lactam antibiotic resistance in Gram-negative bacteria, primarily caused by ß-lactamase enzymes that hydrolyze the ß-lactam ring, has become a serious clinical problem. Carbapenems were formerly considered "last resort" antibiotics because they escaped breakdown by most ß-lactamases, due to slow deacylation of the acyl-enzyme intermediate. However, an increasing number of Gram-negative bacteria now produce ß-lactamases with carbapenemase activity: these efficiently hydrolyze the carbapenem ß-lactam ring, severely limiting the treatment of some bacterial infections. Here, we use quantum mechanics/molecular mechanics (QM/MM) simulations of the deacylation reactions of acyl-enzyme complexes of eight ß-lactamases of class A (the most widely distributed ß-lactamase group) with the carbapenem meropenem to investigate differences between those inhibited by carbapenems (TEM-1, SHV-1, BlaC, and CTX-M-16) and those that hydrolyze them (SFC-1, KPC-2, NMC-A, and SME-1). QM/MM molecular dynamics simulations confirm the two enzyme groups to differ in the preferred acyl-enzyme orientation: carbapenem-inhibited enzymes favor hydrogen bonding of the carbapenem hydroxyethyl group to deacylating water (DW). QM/MM simulations of deacylation give activation free energies in good agreement with experimental hydrolysis rates, correctly distinguishing carbapenemases. For the carbapenem-inhibited enzymes, free energies for deacylation are significantly higher than for the carbapenemases, even when the hydroxyethyl group was restrained to prevent interaction with the DW. Analysis of these simulations, and additional simulations of mutant enzymes, shows how factors including the hydroxyethyl orientation, the active site volume, and architecture (conformations of Asn170 and Asn132; organization of the oxyanion hole; and the Cys69-Cys238 disulfide bond) collectively determine catalytic efficiency toward carbapenems.


Asunto(s)
Simulación de Dinámica Molecular , beta-Lactamasas , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas , Carbapenémicos/química , Carbapenémicos/farmacología , Bacterias Gramnegativas/metabolismo , beta-Lactamasas/metabolismo , beta-Lactamas/metabolismo
2.
Curr Med Chem ; 27(38): 6458-6479, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30963962

RESUMEN

In recent years there has been a paradigm shift in how data is being used to progress early drug discovery campaigns from hit identification to candidate selection. Significant developments in data mining methods and the accessibility of tools for research scientists have been instrumental in reducing drug discovery timelines and in increasing the likelihood of a chemical entity achieving drug development milestones. KNIME, the Konstanz Information Miner, is a leading open source data analytics platform and has supported drug discovery endeavours for over a decade. KNIME provides a rich palette of tools supported by an extensive community of contributors to enable ligandand structure-based drug design. This review will examine recent developments within the KNIME platform to support small-molecule drug design and provide a perspective on the challenges and future developments within this field.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Ligandos , Programas Informáticos
3.
J Chem Inf Model ; 59(8): 3365-3369, 2019 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-31361944

RESUMEN

Class A ß-lactamases cause clinically relevant resistance to ß-lactam antibiotics. Carbapenem degradation is a particular concern. We present an efficient QM/MM molecular simulation protocol that accurately predicts the activity of ß-lactamases against carbapenems. Simulations take less than 24 CPU hours, a greater than 99% reduction, and do not require fitting against experimental data or significant parametrization. This computational assay also reveals mechanistic details of ß-lactam breakdown and should assist in evaluating emerging ß-lactamase variants and developing new antibiotics.


Asunto(s)
Antibacterianos/metabolismo , Simulación de Dinámica Molecular , beta-Lactamasas/metabolismo , beta-Lactamas/metabolismo , Conformación Proteica , Termodinámica , beta-Lactamasas/química
4.
Methods Mol Biol ; 1705: 179-195, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29188563

RESUMEN

The understanding of binding interactions between any protein and a small molecule plays a key role in the rationalization of affinity and selectivity. It is essential for an efficient structure-based drug design (SBDD) process. FMO enables ab initio approaches to be applied to systems that conventional quantum-mechanical (QM) methods would find challenging. The key advantage of the Fragment Molecular Orbital Method (FMO) is that it can reveal atomistic details about the individual contributions and chemical nature of each residue and water molecule toward ligand binding which would otherwise be difficult to detect without using QM methods. In this chapter, we demonstrate the typical use of FMO to analyze 19 crystal structures of ß1 and ß2 adrenergic receptors with their corresponding agonists and antagonists.


Asunto(s)
Diseño de Fármacos , Descubrimiento de Drogas , Ligandos , Algoritmos , Descubrimiento de Drogas/métodos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad Cuantitativa , Receptores Acoplados a Proteínas G/metabolismo
5.
Biochem Soc Trans ; 44(2): 574-81, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27068972

RESUMEN

The understanding of binding interactions between any protein and a small molecule plays a key role in the rationalization of affinity and selectivity and is essential for an efficient structure-based drug discovery (SBDD) process. Clearly, to begin SBDD, a structure is needed, and although there has been fantastic progress in solving G-protein-coupled receptor (GPCR) crystal structures, the process remains quite slow and is not currently feasible for every GPCR or GPCR-ligand complex. This situation significantly limits the ability of X-ray crystallography to impact the drug discovery process for GPCR targets in 'real-time' and hence there is still a need for other practical and cost-efficient alternatives. We present here an approach that integrates our previously described hierarchical GPCR modelling protocol (HGMP) and the fragment molecular orbital (FMO) quantum mechanics (QM) method to explore the interactions and selectivity of the human orexin-2 receptor (OX2R) and its recently discovered nonpeptidic agonists. HGMP generates a 3D model of GPCR structures and its complexes with small molecules by applying a set of computational methods. FMO allowsab initioapproaches to be applied to systems that conventional QM methods would find challenging. The key advantage of FMO is that it can reveal information on the individual contribution and chemical nature of each residue and water molecule to the ligand binding that normally would be difficult to detect without QM. We illustrate how the combination of both techniques provides a practical and efficient approach that can be used to analyse the existing structure-function relationships (SAR) and to drive forward SBDD in a real-world example for which there is no crystal structure of the complex available.


Asunto(s)
Orexinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química
6.
J Med Chem ; 59(9): 4352-63, 2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-26950250

RESUMEN

Inhibition of inducible T-cell kinase (ITK), a nonreceptor tyrosine kinase, may represent a novel treatment for allergic asthma. In our previous reports, we described the discovery of sulfonylpyridine (SAP), benzothiazole (BZT), indazole (IND), and tetrahydroindazole (THI) series as novel ITK inhibitors and how computational tools such as dihedral scans and docking were used to support this process. X-ray crystallography and modeling were applied to provide essential insight into ITK-ligand interactions. However, "visual inspection" traditionally used for the rationalization of protein-ligand affinity cannot always explain the full complexity of the molecular interactions. The fragment molecular orbital (FMO) quantum-mechanical (QM) method provides a complete list of the interactions formed between the ligand and protein that are often omitted from traditional structure-based descriptions. FMO methodology was successfully used as part of a rational structure-based drug design effort to improve the ITK potency of high-throughput screening hits, ultimately delivering ligands with potency in the subnanomolar range.


Asunto(s)
Interleucina-2/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Benzotiazoles/química , Cristalografía por Rayos X , Diseño de Fármacos , Inducción Enzimática , Indazoles/química , Modelos Moleculares , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas/biosíntesis , Piridinas/química , Teoría Cuántica
7.
J Chem Inf Model ; 56(1): 159-72, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26642258

RESUMEN

Our interpretation of ligand-protein interactions is often informed by high-resolution structures, which represent the cornerstone of structure-based drug design. However, visual inspection and molecular mechanics approaches cannot explain the full complexity of molecular interactions. Quantum Mechanics approaches are often too computationally expensive, but one method, Fragment Molecular Orbital (FMO), offers an excellent compromise and has the potential to reveal key interactions that would otherwise be hard to detect. To illustrate this, we have applied the FMO method to 18 Class A GPCR-ligand crystal structures, representing different branches of the GPCR genome. Our work reveals key interactions that are often omitted from structure-based descriptions, including hydrophobic interactions, nonclassical hydrogen bonds, and the involvement of backbone atoms. This approach provides a more comprehensive picture of receptor-ligand interactions than is currently used and should prove useful for evaluation of the chemical nature of ligand binding and to support structure-based drug design.


Asunto(s)
Modelos Moleculares , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos , Enlace de Hidrógeno , Ligandos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Unión Proteica , Conformación Proteica , Ratas
8.
Chem Commun (Camb) ; 50(94): 14736-9, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25321894

RESUMEN

Carbapenems, 'last resort' antibiotics for many bacterial infections, can now be broken down by several class A ß-lactamases (i.e. carbapenemases). Here, carbapenemase activity is predicted through QM/MM dynamics simulations of acyl-enzyme deacylation, requiring only the 3D structure of the apo-enzyme. This may assist in anticipating resistance and future antibiotic design.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pruebas de Enzimas , Teoría Cuántica , beta-Lactamasas/metabolismo , Proteínas Bacterianas/química , Carbapenémicos/metabolismo , Hidrólisis , Simulación de Dinámica Molecular , Termodinámica , beta-Lactamasas/química
9.
J Phys Chem B ; 117(22): 6656-66, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23654226

RESUMEN

Fatty acid amide hydrolase (FAAH) is a member of the amidase signature family and is responsible for the hydrolytic deactivation of fatty acid amide neuromodulators, such as anandamide. FAAH carries an unusual catalytic triad consisting of Lys-Ser-Ser, which uniquely enables the enzyme to cleave amides and esters at similar rates. The acylation of 9Z-octadecenamide (oleamide, a FAAH reference substrate) has been widely investigated by computational methods, and those have shown that conformational fluctuations of the active site affect the reaction barrier. Empirical descriptors have been devised to provide a possible mechanistic explanation for such conformational effects, but a first-principles understanding is still missing. A comparison of FAAH acylation with a reference reaction in water suggests that transition-state stabilization is crucial for catalysis because the activation energy barrier falls by 6 kcal/mol in the presence of the active site. With this in mind, we have analyzed the enzymatic reaction using the differential transition-state stabilization (DTSS) approach to determine key active-site residues for lowering the barrier. We examined several QM/MM structures at the MP2 level of theory and analyzed catalytic effects with a variation-perturbation partitioning of the interaction energy into electrostatic multipole and penetration, exchange, delocalization, and correlation terms. Three residues - Thr236, Ser218, and one water molecule - appear to be essential for the stabilization of the transition state, a conclusion that is also reflected by catalytic fields and agrees with site-directed mutagenesis data. An analogous analysis for URB524, URB618, and URB694 (three potent representatives of covalent, carbamate-based FAAH inhibitors) confirms the importance of the residues involved in oleamide acylation, providing insight for future inhibitor design.


Asunto(s)
Amidohidrolasas/metabolismo , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/genética , Biocatálisis , Compuestos de Bifenilo/química , Compuestos de Bifenilo/metabolismo , Carbamatos/química , Carbamatos/metabolismo , Dominio Catalítico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Teoría Cuántica , Electricidad Estática
10.
J Am Chem Soc ; 134(44): 18275-85, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23030300

RESUMEN

Carbapenems are the most potent ß-lactam antibiotics and key drugs for treating infections by Gram-negative bacteria. In such organisms, ß-lactam resistance arises principally from ß-lactamase production. Although carbapenems escape the activity of most ß-lactamases, due in the class A enzymes to slow deacylation of the covalent acylenzyme intermediate, carbapenem-hydrolyzing class A ß-lactamases are now disseminating in clinically relevant bacteria. The reasons why carbapenems are substrates for these enzymes, but inhibit other class A ß-lactamases, remain to be fully established. Here, we present crystal structures of the class A carbapenemase SFC-1 from Serratia fonticola and of complexes of its Ser70 Ala (Michaelis) and Glu166 Ala (acylenzyme) mutants with the carbapenem meropenem. These are the first crystal structures of carbapenem complexes of a class A carbapenemase. Our data reveal that, in the SFC-1 acylenzyme complex, the meropenem 6α-1R-hydroxyethyl group interacts with Asn132, but not with the deacylating water molecule. Molecular dynamics simulations indicate that this mode of binding occurs in both the Michaelis and acylenzyme complexes of wild-type SFC-1. In carbapenem-inhibited class A ß-lactamases, it is proposed that the deacylating water molecule is deactivated by interaction with the carbapenem 6α-1R-hydroxyethyl substituent. Structural comparisons with such enzymes suggest that in SFC-1 subtle repositioning of key residues (Ser70, Ser130, Asn132 and Asn170) enlarges the active site, permitting rotation of the carbapenem 6α-1R-hydroxyethyl group and abolishing this contact. Our data show that SFC-1, and by implication other such carbapenem-hydrolyzing enzymes, uses Asn132 to orient bound carbapenems for efficient deacylation and prevent their interaction with the deacylating water molecule.


Asunto(s)
Carbapenémicos/metabolismo , Serratia/enzimología , beta-Lactamasas/metabolismo , Carbapenémicos/química , Dominio Catalítico , Cristalografía por Rayos X , Hidrólisis , Simulación de Dinámica Molecular , Mutación Puntual , Serratia/química , Serratia/genética , Infecciones por Serratia/microbiología , beta-Lactamasas/química , beta-Lactamasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...