Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39042578

RESUMEN

TEMPUS is a new detector system being developed for photon science. It is based on the Timepix4 chip and, thus, it can be operated in two distinct modes: a photon-counting mode, which allows for conventional full-frame readout at rates up to 40 kfps; and an event-driven time-stamping mode, which allows excellent time resolution in the nanosecond regime in measurements with moderate X-ray flux. In this paper, the initial prototype, a single-chip device, is introduced, and the readout system described. Moreover, and in order to evaluate its capabilities, some tests were performed at PETRA III and ESRF for which results are also presented.

2.
Sci Adv ; 10(26): eadn9825, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38924415

RESUMEN

Optical quantum memories are key elements in modern quantum technologies to reliably store and retrieve quantum information. At present, they are conceptually limited to the optical wavelength regime. Recent advancements in x-ray quantum optics render an extension of optical quantum memory protocols to ultrashort wavelengths possible, thereby establishing quantum photonics at x-ray energies. Here, we introduce an x-ray quantum memory protocol that utilizes mechanically driven nuclear resonant 57Fe absorbers to form a comb structure in the nuclear absorption spectrum by using the Doppler effect. This room-temperature nuclear frequency comb enables us to control the waveform of x-ray photon wave packets to a high level of accuracy and fidelity using solely mechanical motions. This tunable, robust, and highly flexible system offers a versatile platform for a compact solid-state quantum memory at room temperature for hard x-rays.

3.
J Inorg Biochem ; 246: 112281, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37352657

RESUMEN

The nitrophorins (NPs) comprise an unusual group of heme proteins with stable ferric heme iron nitric oxide (Fe-NO) complexes. They are found in the salivary glands of the blood-sucking kissing bug Rhodnius prolixus, which uses the NPs to transport the highly reactive signaling molecule NO. Nuclear resonance vibrational spectroscopy (NRVS) of both isoform NP2 and a mutant NP2(Leu132Val) show, after addition of NO, a strong structured vibrational band at around 600 cm-1, which is due to modes with significant Fe-NO bending and stretching contribution. Based on a hybrid calculation method, which uses density functional theory and molecular mechanics, it is demonstrated that protonation of the heme carboxyl groups does influence both the vibrational properties of the Fe-NO entity and its electronic ground state. Moreover, heme protonation causes a significant increase of the gap between the highest occupied and lowest unoccupied molecular orbital by almost one order of magnitude leading to a stabilization of the Fe-NO bond.


Asunto(s)
Hemoproteínas , Rhodnius , Animales , Hemo/química , Proteínas Portadoras/metabolismo , Óxido Nítrico/metabolismo , Proteínas y Péptidos Salivales , Hemoproteínas/química , Hierro/química , Rhodnius/química , Rhodnius/metabolismo
4.
Faraday Discuss ; 243(0): 253-269, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37067436

RESUMEN

The biological conversion of N2 to NH3 is accomplished by the nitrogenase family, which is collectively comprised of three closely related but unique metalloenzymes. In the present study, we have employed a combination of the synchrotron-based technique of 57Fe nuclear resonance vibrational spectroscopy together with DFT-based quantum mechanics/molecular mechanics (QM/MM) calculations to probe the electronic structure and dynamics of the catalytic components of each of the three unique M N2ase enzymes (M = Mo, V, Fe) in both the presence (holo-) and absence (apo-) of the catalytic FeMco clusters (FeMoco, FeVco and FeFeco). The results described herein provide vibrational mode assignments for important fingerprint regions of the FeMco clusters, and demonstrate the sensitivity of the calculated partial vibrational density of states (PVDOS) to the geometric and electronic structures of these clusters. Furthermore, we discuss the challenges that are faced when employing NRVS to investigate large, multi-component metalloenzymatic systems, and outline the scope and limitations of current state-of-the-art theory in reproducing complex spectra.


Asunto(s)
Nitrogenasa , Nitrogenasa/química , Dominio Catalítico , Análisis Espectral
5.
J Synchrotron Radiat ; 29(Pt 6): 1329-1337, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36345740

RESUMEN

A synchrotron Mössbauer source (SMS) enables conventional (energy-domain) Mössbauer spectroscopy at synchrotron radiation facilities. In comparison with radioactive sources, SMS provides a beam of several micrometres in size, permitting studies of extremely small samples. The SMS linewidth can be narrowed at the expense of its intensity by varying the angular position and temperature of the key element of the SMS - an iron borate 57FeBO3 crystal. Here, in order to optimize the SMS performance, the angular and temperature dependencies of the SMS parameters have been studied and the optimal angular position and temperature of the crystal have been determined for highest intensity at specified source width. The results show that, when accepting broadening of the source width up to ∼6 natural widths, the intensity of the SMS at the European Synchrotron reaches more than 105 γ-quanta s-1. In the opposite extreme, the width of the source approaches the natural width with intensity decreasing to about 103 γ-quanta s-1. These changes of intensity up to two orders of magnitude take place over a temperature range of about 0.5°C. For all temperature and angular conditions, the instrumental function of the source was derived; we also analyzed the modification of its shape when passing from the `low-width' to `high-intensity' extremes of SMS operation. Finally, we estimated the influence of the temperature instability and mosaicity of the iron borate crystal on the SMS performance.

6.
Inorg Chem ; 60(13): 9571-9579, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34143607

RESUMEN

Using the density functional theory, we study the structural and lattice dynamical properties of europium sesquioxide (Eu2O3) in the cubic, trigonal, and monoclinic phases. The obtained lattice parameters and energies of the Raman modes show a good agreement with the available experimental data. The Eu-partial phonon density of states calculated for the cubic structure is compared with the nuclear inelastic scattering data obtained from a 20 nm thick Eu2O3 film deposited on a YSZ substrate. A small shift of the experimental spectrum to higher energies results from a compressive strain induced by the substrate. On the basis of lattice and phonon properties, we analyze the mechanisms of structural transitions between different phases of Eu2O3.

7.
J Synchrotron Radiat ; 28(Pt 1): 91-103, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399557

RESUMEN

The performance of a liquid-nitrogen-cooled high-heat-load monochromator with a horizontal scattering plane has been analysed, aiming to preserve the high quality of the X-ray beam in the vertical plane for downstream optics. Using finite-element analysis, height profiles of the crystal surface for various heat loads and the corresponding slope errors in the meridional and sagittal planes were calculated. Then the angular distortions of the reflected beam in both meridional and sagittal planes were calculated analytically and also modelled by ray tracing, revealing a good agreement of the two approaches. The results show that with increasing heat load in the crystal the slope errors of the crystal surface reach their smallest values first in the sagittal and then in the meridional plane. For the considered case of interest at a photon energy of 14.412 keV and the Si(111) reflection with a Bragg angle of 7.88°, the angular distortions of the reflected beam in the sagittal plane are an order of magnitude smaller than in the meridional one. Furthermore, they are smaller than the typical angular size of the beam source at the monochromator position. For a high-heat-load monochromator operating in the horizontal scattering plane, the sagittal angular distortions of the reflected beam appear in the vertical plane. Thus, such an instrument perfectly preserves the high quality of the X-ray beam in the vertical plane for downstream optics. Compared with vertical scattering, the throughput of the monochromatic beam with the horizontal scattering plane is reduced by only 3.3% for the new EBS source, instead of 34.3% for the old ESRF-1 machine. This identifies the horizontal-scattering high-heat-load monochromator as a device essentially free of the heat-load effects in the vertical plane and without significant loss in terms of throughput.

8.
Nanoscale Adv ; 4(1): 19-25, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36132967

RESUMEN

The spatial confinement of atoms at surfaces and interfaces significantly alters the lattice dynamics of thin films, heterostructures and multilayers. Ultrathin films with high dielectric constants (high-k) are of paramount interest for applications as gate layers in current and future integrated circuits. Here we report a lattice dynamics study of high-k Eu2O3 films with thicknesses of 21.3, 2.2, 1.3, and 0.8 nm deposited on YSZ(001). The Eu-partial phonon density of states (PDOS), obtained from nuclear inelastic scattering, exhibits broadening of the phonon peaks accompanied by up to a four-fold enhancement of the number of low-energy states compared to the ab initio calculated PDOS of a perfect Eu2O3 crystal. Our analysis demonstrates that while the former effect reflects the reduced phonon lifetimes observed in thin films due to scattering from lattice defects, the latter phenomenon arises from an ultrathin EuO layer formed between the thin Eu2O3 film and the YSZ(001) substrate. Thus, our work uncovers another potential source of vibrational anomalies in thin films and multilayers, which has to be cautiously considered.

9.
J Phys Chem A ; 124(39): 7869-7880, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32894948

RESUMEN

α-Sb2O3 (senarmontite), ß-Sb2O3 (valentinite), and α-TeO2 (paratellurite) are compounds with pronounced stereochemically active Sb and Te lone pairs. The vibrational and lattice properties of each have been previously studied but often lead to incomplete or unreliable results due to modes being inactive in infrared or Raman spectroscopy. Here, we present a study of the relationship between bonding and lattice dynamics of these compounds. Mössbauer spectroscopy is used to study the structure of Sb in α-Sb2O3 and ß-Sb2O3, whereas the vibrational modes of Sb and Te for each oxide are investigated using nuclear inelastic scattering, and further information on O vibrational modes is obtained using inelastic neutron scattering. Additionally, vibrational frequencies obtained by density functional theory (DFT) calculations are compared with experimental results in order to assess the validity of the utilized functional. Good agreement was found between DFT-calculated and experimental density of phonon states with a 7% scaling factor. The Sb-O-Sb wagging mode of α-Sb2O3 whose frequency was not clear in most previous studies is experimentally observed for the first time at ∼340 cm-1. Softer lattice vibrational modes occur in orthorhombic ß-Sb2O3 compared to cubic α-Sb2O3, indicating that the antimony bonds are weakened upon transforming from the molecular α phase to the layer-chained ß structure. The resulting vibrational entropy increase of 0.45 ± 0.1 kB/Sb2O3 at 880 K accounts for about half of the α-ß transition entropy. The comparison of experimental and theoretical approaches presented here provides a detailed picture of the lattice dynamics in these oxides beyond the zone center and shows that the accuracy of DFT is sufficient for future calculations of similar material structures.

10.
ACS Appl Mater Interfaces ; 12(28): 31696-31705, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32551478

RESUMEN

Spin crossover complexes are among the most studied classes of molecular switches and have attracted considerable attention for their potential technological use as active units in multifunctional devices. A fundamental step toward their practical implementation is the integration in macroscopic devices adopting hybrid vertical architectures. First, the physical properties of technological interest shown by these materials in the bulk phase have to be retained once they are deposited on a solid surface. Herein, we describe the study of a hybrid molecular inorganic junction embedding the spin crossover complex [Fe(qnal)2] (qnal = quinoline-naphthaldehyde) as an active switchable thin film sandwiched within energy-optimized metallic electrodes. In these junctions, developed and characterized with the support of state of the art techniques including synchrotron Mössbauer source (SMS) spectroscopy and focused-ion beam scanning transmission electron microscopy, we observed that the spin state conversion of the Fe(II)-based spin crossover film is associated with a transition from a space charge-limited current (SCLC) transport mechanism with shallow traps to a SCLC mechanism characterized by the presence of an exponential distribution of traps concomitant with the spin transition temperature.

11.
Phys Rev Lett ; 123(9): 097402, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31524474

RESUMEN

Hard-x-ray spectroscopy relies on a suite of modern techniques for studies of vibrational, electronic, and magnetic excitations in condensed matter. At present, the energy resolution of these techniques can be improved only by decreasing the spectral window of the involved optics-monochromators and analyzers-thereby sacrificing the intensity. Here, we demonstrate hard-x-ray spectroscopy with greatly improved energy resolution without narrowing the spectral window by adapting principles of spectrographic imaging to the hard-x-ray regime. Similar to Newton's classical prism, the hard-x-ray spectrograph disperses different "colors"-i.e., energies-of x-ray photons in space. Then, selecting each energy component with a slit ensures high energy resolution, whereas measuring x-ray spectra with all components of a broad spectral window keeps the intensity. We employ the principles of spectrographic imaging for phonon spectroscopy. Here the new approach revealed anomalous soft atomic dynamics in α-iron, a phenomenon which was not previously reported in the literature. We argue that hard-x-ray spectrographic imaging also could be a path to discovering new physics in studies of electronic and magnetic excitations.

12.
Dalton Trans ; 48(41): 15625-15634, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31418431

RESUMEN

Nuclear inelastic scattering of synchrotron radiation has been used to determine the phonon density of vibrational states (pDOS) for the high-spin and low-spin phases of the hydrated and dehydrated isomer of the spin crossover polymer [Fe(pyrazine)][Pt(CN)4]. Density functional theory calculations have been performed for molecular models of the 3D polymeric system. The models contain 15 Fe(ii)/Zn(ii) centres and allowed the assignment of the observed bands to the corresponding vibrational modes. Thermodynamic parameters like the mean force constant and the vibrational entropy but also sound velocities of the molecular lattices in both spin states have been derived from the pDOS. Modelling of the low-spin and high-spin centres in the environment or matrix of different spins has revealed the enthalpic and entropic components of the intramolecular cooperativity. In contrast to the 1D spin crossover systems (Rackwitz, et al., Phys. Chem. Chem. Phys., 2013, 15, 15450) based on the rigid 1,2,4-triazole derivatives the distortion of the low-spin iron Fe(ii) centre by the matrix of high-spin Fe(ii) (modelled as Zn(ii)) occurs only in two dimensions, defined by the [M(CN)4]2- sheets, rather than concerning all six Fe-N bonds, as in 1D systems. The enthalpic intramolecular cooperativity has been determined to be 15 kJ mol-1 which is lower than that in 1D systems (20-30 kJ mol-1). Yet, the entropic contribution stabilizes the low-spin state in a low-spin matrix, a behaviour which is opposite to what was found for the 1D systems.

13.
J Synchrotron Radiat ; 26(Pt 4): 1069-1072, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31274429

RESUMEN

Self-amplified spontaneous emission (SASE) enables X-ray free-electron lasers (XFELs) to generate hard X-ray pulses of sub-100 fs duration. However, due to the stochastic nature of SASE, the energy spectrum fluctuates from pulse to pulse. Many experiments that employ XFEL radiation require the resolution of the spectrum of each pulse. The work presented here investigates the capacity of a thin strongly bent diamond crystal to resolve the energy spectra of hard X-ray SASE pulses by studying its diffraction properties. Rocking curves of the symmetric C*(440) reflection have been measured for different bending radii. The experimental data match the theoretical modelling based on the Takagi-Taupin equations of dynamical diffraction. A uniform strain gradient has proven to be a valid model of strain deformations in the crystal.

14.
Nanoscale ; 11(22): 10968-10976, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31139805

RESUMEN

Reducing the material sizes to the nanometer length scale leads to drastic modifications of the propagating lattice excitations (phonons) and their interactions with electrons and magnons. In EuO, a promising material for spintronic applications in which a giant spin-phonon interaction is present, this might imply a reduction of the degree of spin polarization in thin films. Therefore, a comprehensive investigation of the lattice dynamics and spin-phonon interaction in EuO films is necessary for practical applications. We report a systematic lattice dynamics study of ultrathin EuO(001) films using nuclear inelastic scattering on the Mössbauer-active isotope 151Eu and first-principles theory. The films were epitaxially grown on YAlO3(110), which induces a tensile strain of ca. 2%. By reducing the EuO layer thickness from 8 nm to a sub-monolayer coverage, the Eu-partial phonon density of states (PDOS) reveals a gradual enhancement of the number of low-energy phonon states and simultaneous broadening and suppression of the peaks. These deviations from bulk features lead to significant anomalies in the vibrational thermodynamic and elastic properties calculated from the PDOS. The experimental results, supported by first-principles theory, unveil a reduction of the strength of the spin-phonon interaction in the tensile-strained EuO by a factor of four compared to a strain-free lattice.

15.
Nat Commun ; 9(1): 4142, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297769

RESUMEN

A Verwey-type charge-ordering transition in magnetite at 120 K leads to the formation of linear units of three iron ions with one shared electron, called trimerons. The recently-discovered iron pentoxide (Fe4O5) comprising mixed-valent iron cations at octahedral chains, demonstrates another unusual charge-ordering transition at 150 K involving competing formation of iron trimerons and dimerons. Here, we experimentally show that applied pressure can tune the charge-ordering pattern in Fe4O5 and strongly affect the ordering temperature. We report two charge-ordered phases, the first of which may comprise both dimeron and trimeron units, whereas, the second exhibits an overall dimerization involving both the octahedral and trigonal-prismatic chains of iron in the crystal structure. We link the dramatic change in the charge-ordering pattern in the second phase to redistribution of electrons between the octahedral and prismatic iron chains, and propose that the average oxidation state of the iron cations can pre-determine a charge-ordering pattern.

16.
J Synchrotron Radiat ; 25(Pt 2): 473-483, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29488927

RESUMEN

Mössbauer reflectivity spectra and nuclear resonance reflectivity (NRR) curves have been measured using the Synchrotron Mössbauer Source (SMS) for a [57Fe/Cr]30 periodic multilayer, characterized by the antiferromagnetic interlayer coupling between adjacent 57Fe layers. Specific features of the Mössbauer reflectivity spectra measured with π-polarized radiation of the SMS near the critical angle and at the `magnetic' maximum on the NRR curve are analyzed. The variation of the ratio of lines in the Mössbauer reflectivity spectra and the change of the intensity of the `magnetic' maximum under an applied external field has been used to reveal the transformation of the magnetic alignment in the investigated multilayer.

17.
Nat Commun ; 9(1): 480, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396458

RESUMEN

The use of single molecule magnets (SMMs) as cornerstone elements in spintronics and quantum computing applications demands that magnetic bistability is retained when molecules are interfaced with solid conducting surfaces. Here, we employ synchrotron Mössbauer spectroscopy to investigate a monolayer of a tetrairon(III) (Fe4) SMM chemically grafted on a gold substrate. At low temperature and zero magnetic field, we observe the magnetic pattern of the Fe4 molecule, indicating slow spin fluctuations compared to the Mössbauer timescale. Significant structural deformations of the magnetic core, induced by the interaction with the substrate, as predicted by ab initio molecular dynamics, are also observed. However, the effects of the modifications occurring at the individual iron sites partially compensate each other, so that slow magnetic relaxation is retained on the surface. Interestingly, these deformations escaped detection by conventional synchrotron-based techniques, like X-ray magnetic circular dichroism, thus highlighting the power of synchrotron Mössbauer spectroscopy for the investigation of hybrid interfaces.

18.
Chemistry ; 24(20): 5225-5237, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29193386

RESUMEN

Acireductone dioxygenase (ARD) is an intriguing enzyme from the methionine salvage pathway that is capable of catalysing two different oxidation reactions with the same substrate depending on the type of the metal ion in the active site. To date, the structural information regarding the ARD-acireductone complex is limited and possible reaction mechanisms are still under debate. The results of joint experimental and computational studies undertaken to advance knowledge about ARD are reported. The crystal structure of an ARD from Homo sapiens was determined with selenomethionine. EPR spectroscopy suggested that binding acireductone triggers one protein residue to dissociate from Fe2+ , which allows NO (and presumably O2 ) to bind directly to the metal. Mössbauer spectroscopic data (interpreted with the aid of DFT calculations) was consistent with bidentate binding of acireductone to Fe2+ and concomitant dissociation of His88 from the metal. Major features of Fe vibrational spectra obtained for the native enzyme and upon addition of acireductone were reproduced by QM/MM calculations for the proposed models. A computational (QM/MM) study of the reaction mechanisms suggests that Fe2+ promotes O-O bond homolysis, which elicits cleavage of the C1-C2 bond of the substrate. Higher M3+ /M2+ redox potentials of other divalent metals do not support this pathway, and instead the reaction proceeds similarly to the key reaction step in the quercetin 2,3-dioxygenase mechanism.


Asunto(s)
Dioxigenasas/química , Hierro/química , Catálisis , Dominio Catalítico , Humanos , Iones , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Selenometionina/química , Transducción de Señal
19.
Meteorit Planet Sci ; 52(5): 925-936, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28713215

RESUMEN

Metallic phases in the Tazewell IIICD iron and Esquel pallasite meteorites were examined using 57Fe synchrotron Mössbauer spectroscopy. Spatial resolution of ~10-20 µm was achieved, together with high throughput, enabling individual spectra to be recorded in less than 1 h. Spectra were recorded every 5-10 µm, allowing phase fractions and hyperfine parameters to be traced along transects of key microstructural features. The main focus of the study was the transitional region between kamacite and plessite, known as the "cloudy zone." Results confirm the presence of tetrataenite and antitaenite in the cloudy zone as its only components. However, both phases were also found in plessite, indicating that antitaenite is not restricted exclusively to the cloudy zone, as previously thought. The confirmation of paramagnetic antitaenite as the matrix phase of the cloudy zone contrasts with recent observations of a ferromagnetic matrix phase using X-ray photoemission electron spectroscopy. Possible explanations for the different results seen using these techniques are proposed.

20.
J Phys Condens Matter ; 27(30): 305401, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26173206

RESUMEN

The lattice dynamics of the silica polymorph [Formula: see text]-cristobalite has been investigated by a combination of diffuse and inelastic x-ray scattering and ab initio lattice dynamics calculations. Phonon dispersion relations and vibrational density of states are reported and the phonon eigenvectors analyzed by a detailed comparison of scattering intensities. The experimentally validated calculation is used to identify the vibration contributing most to the first peak in the density of vibrational states. The comparison of its displacement pattern to the silica polymorphs [Formula: see text]-quartz and coesite and to vitreous silica reveals a distinct similarity and allows for decisive conclusions on the vibrations causing the so-called Boson peak in silica glass.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA