Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Int J Mol Sci ; 25(1)2024 Jan 02.
Article En | MEDLINE | ID: mdl-38203768

Osteoarthritis (OA) is common and affected by several factors, such as age, weight, sex, and genetics. The pathogenesis of OA remains unclear. Therefore, using a rat model of monosodium iodoacetate (MIA)-induced OA, we examined genomic-wide DNA methylation using methyl-seq and characterized the transcriptome using RNA-seq in the articular cartilage tissue from a negative control (NC) and MIA-induced rats. We identified 170 genes (100 hypomethylated and upregulated genes and 70 hypermethylated and downregulated genes) regulated by DNA methylation in OA. DNA methylation-regulated genes were enriched in functions related to focal adhesion, extracellular matrix (ECM)-receptor interaction and the PI3K-Akt and Hippo signaling pathways. Functions related to extracellular matrix organization, extracellular matrix proteoglycans, and collagen formation were involved in OA. A molecular and protein-protein network was constructed using methylated expression-correlated genes. Erk1/2 was a downstream target of OA-induced changes in DNA methylation and RNA expression. We found that the integrin subunit alpha 2 (ITGA2) gene is important in focal adhesion, alpha6-beta4 integrin signaling, and the inflammatory response pathway in OA. Overall, gene expression changes because DNA methylation influences OA pathogenesis. ITGA2, whose gene expression changes are regulated by DNA methylation during OA onset, is a candidate gene. Our findings provide insights into the epigenetic targets of OA processes in rats.


Cartilage, Articular , Osteoarthritis , Animals , Rats , DNA Methylation , Transcriptome , Phosphatidylinositol 3-Kinases , Integrin alpha2 , Iodoacetic Acid , Osteoarthritis/chemically induced , Osteoarthritis/genetics
2.
Planta Med ; 90(1): 4-12, 2024 Jan.
Article En | MEDLINE | ID: mdl-37903549

Agastache rugosa Kuntze (Lamiaceae; Labiatae), a medicinal and functional herb used to treat gastrointestinal diseases, grows well both on islands and inland areas in South Korea. Thus, we aimed to reveal the morphological and micromorphological differences between A. rugosa grown on island and inland areas and their pharmacological effects on gastritis in an animal model by combining morphological and mass spectrophotometric analyses. Morphological analysis showed that island A. rugosa had slightly smaller plants and leaves than inland plants; however, the density of all types of trichomes on the leaves, petioles, and stems of island A. rugosa was significantly higher than that of inland plants. The essential oil component analysis revealed that pulegone levels were substantially higher in island A. rugosa than in inland A. rugosa. Despite the differences between island and inland A. rugosa, treatment with both island and inland A. rugosa reduced gastric damages by more than 40% compared to the gastritis induction group. In addition, expression of inflammatory protein was reduced by about 30% by treatment of island and inland A. rugosa. The present study demonstrates quantitative differences in morphology and volatile components between island and inland plants; significant differences were not observed between the gastritis-inhibitory effects of island and inland A. rugosa, and the efficacy of island A. rugosa was found to be similar to that of A. rugosa grown in inland areas.


Agastache , Gastritis , Oils, Volatile , Animals , Plant Leaves , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Gastritis/chemically induced , Gastritis/drug therapy
3.
Food Sci Nutr ; 11(12): 7887-7899, 2023 Dec.
Article En | MEDLINE | ID: mdl-38107146

Osteoarthritis (OA) is a common chronic joint inflammatory disease characterized by progressive destruction of the articular cartilage, bone remodeling, and excessive chronic pain. Most therapeutic approaches do not rescue the progression of OA effectively or provide relief of symptoms. Protaetia brevitarsis seulensis larva (PBSL), which is attracting attention, is an edible insect with very high nutritional value and herbal medicine for the treatment of blood stasis, hepatic disease, and various inflammatory diseases. However, the effect of PBSL on OA has not yet been investigated. This study aimed to demonstrate the effects of PBSL water extract on the progression of OA using monosodium iodoacetate (MIA)-induced mice and SW1353 chondrocytes or murine macrophages. We injected MIA into the intraarticular area of mice following pretreatment with either saline or PBSL (200 mg/kg) for 2 weeks, and then locomotor activity, microcomputed tomography and histopathological analysis, quantitative reverse transcriptase-polymerase chain reaction analysis, and western blot analysis were performed. To determine the molecular effects of PBSL, we used interleukin-1ß (IL-1ß)-induced SW1353 chondrosarcoma or lipopolysaccharide (LPS)-stimulated macrophages. Pretreatment with PBSL diminished the symptoms of OA. Physical activity, articular cartilage damage, and the generation of microfractures were rescued by pretreatment with PBSL in the mouse model. Pretreatment with PBSL suppressed the progress of OA through the regulation of articular cartilage degradation genes and inflammation in both in vivo and in vitro models. Our results demonstrated that PBSL has value as edible insect that can be used in the development of functional foods for OA.

4.
Plants (Basel) ; 10(10)2021 Sep 27.
Article En | MEDLINE | ID: mdl-34685839

The implementation of the Nagoya Protocol highlighted the importance of identifying alternative herbal products that are as effective as traditional medicine. Dipsacus asperoides and Phlomis umbrosa, two species used in the Korean medicine 'Sok-dan', are used for the treatment of bone- and arthritis-related diseases, and they are often mixed or misused. To identify herbal resources with similar efficacy, we compared the effects of D. asperoides extract (DAE) and P. umbrosa extract (PUE) on osteoarthritis (OA) in a monosodium iodoacetate (MIA)-induced OA rat model. Weight-bearing distribution, serum cytokines, histopathological features, and the expression of matrix metalloproteinases (MMPs) of knee joint tissues were examined in the OA rats treated with DAE and PUE (200 mg/kg) for 21 days. DAE and PUE restored weight-bearing distribution, inhibited the production of serum cytokines, and alleviated the histopathological features of the OA knee tissue. DAE or PUE treatment decreased OA-induced overexpression of MMP-2, MMP-9, and MMP-13 in the knee joint tissue. This study demonstrated the efficacy of both DAE and PUE in an MIA-induced OA model, providing a basis for the clinical use of these products in traditional Korean medicine.

5.
Plants (Basel) ; 10(6)2021 Jun 02.
Article En | MEDLINE | ID: mdl-34199631

Extracts from the plants Phlomis umbrosa and Dipsacus asperoides-which are widely used in Korean and Chinese traditional medicine to treat osteoarthritis and other bone diseases-were used to treat experimental osteoarthritis (OA) rats. Genome-wide differential methylation regions (DMRs) of these medicinal-plant-treated rats were profiled as therapeutic evidence associated with traditional medicine, and they need to be investigated further using detailed molecular research to extrapolate traditional practices to modern medicine. In total, 49 protein-encoding genes whose expression is differentially regulated during disease progression and recovery have been discovered via systematic bioinformatic analysis and have been approved/proposed as druggable targets for various bone diseases by the US food and drug administration. Genes encoding proteins involved in the PI3K/AKT pathway were found to be enriched, likely as this pathway plays a crucial role during OA progression as well as during the recovery process after treatment with the aforementioned plant extracts. The four sub-networks of PI3K/AKT were highly regulated by these plant extracts. Overall, 29 genes were seen in level 2 (51-75%) DMRs and were correlated highly with OA pathogenesis. Here, we propose that these genes could serve as targets to study OA; moreover, the iridoid and triterpenoid phytochemicals obtained from these two plants may serve as potential therapeutic agents.

6.
Front Pharmacol ; 12: 615157, 2021.
Article En | MEDLINE | ID: mdl-33927614

The root of Dipsacus asperoides C. Y. Cheng et T. M. Ai is traditionally used as an analgesic and anti-inflammatory agent to treat pain, rheumatoid arthritis, and bone fractures. However, neither its effects on osteoarthritis (OA) nor its effects on the arthritic cartilage tissue transcriptome have not been fully investigated. In this study, we used a rat model of monosodium iodoacetate- (MIA-) induced OA to investigate the therapeutic effects of a Dipsacus asperoides ethanolic extract (DAE, 200 mg/kg for 21 days). The study first assessed joint diameter, micro-CT scans, and histopathological analysis and then conducted gene expression profiling using RNA sequencing in articular cartilage tissue. We found that DAE treatment ameliorates OA disease phenotypes; it reduced the knee joint diameter and prevented changes in the structural and histological features of the joint, thereby showing that DAE has a protective effect against OA. Based on the results of gene expression profiling and subsequent pathway analysis, we found that several canonical pathways were linked to DAE treatment, including WNT/ß-catenin signaling. Taken together, the present results suggest molecular mechanism, involving gene expression changes, by which DAE has a protective effect in a rat model of MIA-induced OA.

7.
J Ethnopharmacol ; 269: 113752, 2021 Apr 06.
Article En | MEDLINE | ID: mdl-33359858

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, the roots of Angelica reflexa B.Y.Lee (AR) have been used to treat cough, phlegm, neuralgia, and arthralgia in Northeast Asia. AIM OF THE STUDY: The anti-asthmatic effect of AR root extract (ARE) was determined using a murine airway allergic inflammation model and the primary T cell polarization assay. MATERIALS AND METHODS: To evaluate the anti-asthmatic effect of ARE, inflammatory cell infiltration was determined histologically and inflammatory mediators were measured in bronchoalveolar lavage fluid (BALF). Furthermore, the effects of AREs on Th2 cell differentiation and activation were determined by western blotting and flow cytometry. RESULTS: Asthmatic phenotypes were alleviated by ARE treatment, which reduced mucus production, inflammatory cell infiltration (especially eosinophilia), and type 2 cytokine levels in BALF. ARE administration to mice reduced the number of activated Th2 (CD4+CD25+) cells and level of GATA3 in the lungs. Furthermore, ARE treatment inhibited the differentiation of Th2 cells in primary cell culture systems via interferon regulatory factor 4 (IRF4) signaling. CONCLUSIONS: Our findings indicate that the anti-asthmatic effect of AREs is mediated by the reduction in Th2 cell activation by regulating IRF4.


Angelica/chemistry , Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Hypersensitivity/drug therapy , Plant Extracts/pharmacology , Pneumonia/drug therapy , Th2 Cells/drug effects , Animals , Anti-Asthmatic Agents/chemistry , Anti-Asthmatic Agents/therapeutic use , Asthma/chemically induced , Asthma/immunology , Bronchoalveolar Lavage Fluid/immunology , Cytokines/metabolism , Female , GATA3 Transcription Factor/drug effects , GATA3 Transcription Factor/metabolism , Hypersensitivity/immunology , Interferon Regulatory Factors/drug effects , Interferon Regulatory Factors/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Ovalbumin/toxicity , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Plant Roots/chemistry , Pneumonia/chemically induced , Pneumonia/metabolism , Pneumonia/pathology , Pulmonary Eosinophilia/chemically induced , Pulmonary Eosinophilia/drug therapy , RAW 264.7 Cells , Th2 Cells/immunology
8.
Phytomedicine ; 81: 153429, 2021 Jan.
Article En | MEDLINE | ID: mdl-33310311

BACKGROUND: Phlomis umbrosa Turczaninow root has been traditionally used to treat fractures, rheumatoid arthritis, and arthralgia. However, the effects and mechanisms of P. umbrosa on osteoarthritis (OA) remain poorly understood and a functional genomic approach has not been investigated. AIM: The purpose of this study was to investigate the effects and mechanisms of P. umbrosa extract (PUE) on OA using transcriptomic analysis. METHODS: We performed joint diameter measurements, micro computed tomography, and histopathological analysis of monosodium iodoacetate (MIA)-induced OA rats treated with PUE (200 mg/kg) for 3 weeks. Gene expression profiling in articular cartilage tissue was then performed using RNA sequencing (RNA-seq) followed by signaling pathway analysis of regulatory genes. RESULTS: PUE treatment improved OA based on decreased joint diameter, increased joint morphological parameters, and histopathological features. Many genes involved in multiple signal transduction pathway and collagen activation in OA were differentially regulated by PUE. These included genes related to Wnt/ß-catenin, OA pathway, and sonic hedgehog signaling activity. Furthermore, PUE treatment downregulated cartilage damage factors (MMP-9, MMP-13, ADAMTs4, and ADMATs5) and upregulated chondrogenesis (COL2A1 and SOX-9) by regulating the transcription factors SOX-9, Ctnnb1, and Epas1. CONCLUSION: Based on the results of gene expression profiling, this study highlighted the molecular mechanisms underlying the effects of PUE in MIA-induced OA rats. The findings provide novel insight into the mechanisms by which PUE treatment-induced gene expression changes may influence OA disease progression. Taken together, the results suggest that PUE may be used as a source of therapeutic agents for OA.


Osteoarthritis/drug therapy , Osteoarthritis/genetics , Phlomis/chemistry , Plant Extracts/pharmacology , Animals , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Chondrogenesis/drug effects , Chondrogenesis/genetics , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation/drug effects , Iodoacetates/toxicity , Joints/drug effects , Joints/pathology , Male , Osteoarthritis/chemically induced , Osteoarthritis/pathology , Plant Extracts/chemistry , Rats, Sprague-Dawley , X-Ray Microtomography
9.
Plants (Basel) ; 9(12)2020 Dec 10.
Article En | MEDLINE | ID: mdl-33321972

Gyejibokryeong-hwan (GBH) is a traditional formula comprised of five herbal medicines that is frequently used to treat blood stasis and related complex multifactorial disorders such as atherosclerosis. The present study used network pharmacology and molecular docking simulations to clarify the effect and mechanism of the components of GBH. Active compounds were selected using Oriental Medicine Advanced Searching Integrated System (OASIS) and the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), and target genes linked to the selected components were retrieved using Search Tool for Interacting Chemicals (STITCH) and GeneCards. Functional analysis of potential target genes was performed through the Annotation, Visualization and Integrated Discovery (DAVID) database and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and molecular docking confirmed the correlation between five core compounds (quercetin, kaempferol, baicalein, ellagic acid, and baicalin) and six potential target genes (AKT1, CASP3, MAPK1, MAPK3, NOS2, and PTGS2). Molecular docking studies indicated that quercetin strongly interacted with six potential target proteins. Thus, these potential target proteins were closely related to TNF, HIF-1, FoxO, and PI3K-Akt signal pathways, suggesting that these factors and pathways may mediate the beneficial effects of GBH on atherosclerosis. Our results identify target genes and pathways that may mediate the clinical effects of the compounds contained within GBH on atherosclerosis.

10.
Cells ; 9(12)2020 12 07.
Article En | MEDLINE | ID: mdl-33297294

For more than three decades, numerous studies have demonstrated the function of p53 in cell cycle, cellular senescence, autophagy, apoptosis, and metabolism. Among diverse functions, the essential role of p53 is to maintain cellular homeostatic response to stress by regulating proliferation and apoptosis. Recently, adipocytes have been studied with increasing intensity owing to the increased prevalence of metabolic diseases posing a serious public health concern and because metabolic dysfunction can directly induce tumorigenesis. The prevalence of metabolic diseases has steadily increased worldwide, and a growing interest in these diseases has led to the focus on the role of p53 in metabolism and adipocyte differentiation with or without metabolic stress. However, our collective understanding of the direct role of p53 in adipocyte differentiation and function remains insufficient. Therefore, this review focuses on the newly discovered roles of p53 in adipocyte differentiation and function.


Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Adipocytes/metabolism , Cell Differentiation/physiology , Tumor Suppressor Protein p53/metabolism , Adipocytes/cytology , Adipogenesis , Animals , Carcinogenesis , Homeostasis , Humans , Lipid Metabolism
11.
Plants (Basel) ; 9(12)2020 Nov 26.
Article En | MEDLINE | ID: mdl-33256150

Scrophulariae Radix, derived from the dried roots of Scrophularia ningpoensis Hemsl. or S. buergeriana Miq, is a traditional herbal medicine used in Asia to treat rheumatism, arthritis, and pharyngalgia. However, the effects of Scrophularia buergeriana, S. koraeinsis, and S. takesimensis on osteoclast formation and bone resorption remain unclear. In this study, we investigated the morphological characteristics and harpagoside content of S. buergeriana, S. koraiensis, and S. takesimensis, and compared the effects of ethanol extracts of these species using nuclear factor (NF)-κB ligand (RANKL)-mediated osteoclast differentiation. The harpagoside content of the three Scrophularia species was analyzed by high-performance liquid chromatography-mass spectrometry (HPLC/MS). Their therapeutic effects were evaluated by tartrate-resistant acid phosphatase (TRAP)-positive cell formation and bone resorption in bone marrow-derived macrophages (BMMs) harvested from ICR mice. We confirmed the presence of harpagoside in the Scrophularia species. The harpagoside content of S. buergeriana, S. koraiensis, and S. takesimensis was 1.94 ± 0.24 mg/g, 6.47 ± 0.02 mg/g, and 5.50 ± 0.02 mg/g, respectively. Treatment of BMMs with extracts of the three Scrophularia species inhibited TRAP-positive cell formation in a dose-dependent manner. The area of hydroxyapatite-absorbed osteoclasts was markedly decreased after treatment with the three Scrophularia species extracts. Our results indicated that the three species of the genus Scrophularia might exert preventive effects on bone disorders by inhibiting osteoclast differentiation and bone resorption, suggesting that these species may have medicinal and functional value.

12.
Molecules ; 25(14)2020 Jul 17.
Article En | MEDLINE | ID: mdl-32708887

Diabetes mellitus is a chronic metabolic disease, and its progression leads to serious complications. Although various novel therapeutic approaches for diabetes mellitus have developed in the last three decades, its prevalence has been rising more rapidly worldwide. Silk-related materials have been used as anti-diabetic remedies in Oriental medicine and many studies have shown the effects of silk fibroin (SF) in both in vitro and in vivo models. In our previous works, we reported that hydrolyzed SF improved the survival of HIT-T15 cells under high glucose conditions and ameliorated diabetic dyslipidemia in a mouse model. However, we could not provide a precise molecular mechanism. To further evaluate the functions of hydrolyzed SF on the pancreatic ß-cell, we investigated the effects of hydrolyzed SF on the pancreatic ß-cell proliferation and regeneration in the mouse model. Hydrolyzed SF induced the expression of the proliferating cell nuclear antigen (PCNA) and reduced the apoptotic cell population in the pancreatic islets. Hydrolyzed SF treatment not only induced the expression of transcription factors involved in the pancreatic ß-cell regeneration in RT-PCR results but also increased neurogenin3 and Neuro D protein levels in the pancreas of those in the group treated with hydrolyzed SF. In line with this, hydrolyzed SF treatment generated insulin mRNA expressing small cell colonies in the pancreas. Therefore, our results suggest that the administration of hydrolyzed SF increases the pancreatic ß-cell proliferation and regeneration in C57BL/KsJ-Leprdb/db mice.


Basic Helix-Loop-Helix Transcription Factors/genetics , Diabetes Mellitus/drug therapy , Fibroins/pharmacology , Nerve Tissue Proteins/genetics , Proliferating Cell Nuclear Antigen/genetics , Animals , Cell Proliferation/drug effects , Diabetes Mellitus/pathology , Fibroins/chemistry , Gene Expression Regulation/drug effects , Humans , Insulin-Secreting Cells/drug effects , Medicine, East Asian Traditional , Mice , Mice, Inbred NOD , Pancreas/drug effects , Pancreas/pathology , Regeneration/drug effects
13.
J Ethnopharmacol ; 244: 112083, 2019 Nov 15.
Article En | MEDLINE | ID: mdl-31344479

ETHNOPHARMACOLOGICAL EVIDENCE: Lepidii seu Descurainiae Semen (LDS) is used as a traditional herbal medicine in northeast Asia, mainly in Korea, Japan, and China to treat lung disorders including coughs and phlegm caused by acute and chronic airway inflammation. AIM OF THE STUDY: Recently, interest regarding health problems incurred by air pollution has rapidly grown. Herbal medicines are being considered as alternative agents to treat various diseases. In the present study, we evaluated and compared the anti-inflammatory effects of LDS, which is derived from Lepidium apetalum Willd. extracts (LAE) and Descurainia sophia (L.) Webb ex Prantl extracts (DSE), on allergic airway inflammation. MATERIALS AND METHODS: We established an ovalbumin-induced asthmatic mouse model to evaluate the efficacy of LDS extracts. We performed histological examination and measured relevant inflammatory mediators and cells in bronchoalveolar lavage fluid and lung. Furthermore, we conducted an in vitro T helper 2 (Th2) polarization assay, flow cytometry, and western blot analysis. RESULTS: Asthmatic phenotypes were attenuated by LDS extract treatments. LDS extract administration significantly reduced mucus production, inflammatory cell infiltration into airways, and eosinophil activation. Furthermore, LDS extracts reduced the expression of type 2 cytokines and inhibited differentiation and activation of Th2 cells. CONCLUSION: LDS alleviated eosinophilic inflammation by inhibiting Th2 cell differentiation, and DSE was more effective in attenuating allergic lung inflammation than LAE.


Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Brassicaceae , Plant Extracts/therapeutic use , Animals , Anti-Asthmatic Agents/pharmacology , Asthma/chemically induced , Asthma/immunology , Asthma/pathology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Cytokines/immunology , Eosinophils/drug effects , Eosinophils/immunology , Female , Lung/drug effects , Lung/pathology , Mice, Inbred BALB C , Ovalbumin , Plant Extracts/pharmacology
14.
Sci Rep ; 9(1): 2312, 2019 02 19.
Article En | MEDLINE | ID: mdl-30783201

Allergic asthma is a chronic inflammatory disease induced by the inhalation of allergens, which trigger the activation of T helper type 2 (Th2) cells that release Th2 cytokines. Recently, herbal medicines are being considered a major source of novel agents to treat various diseases. In the present study, we evaluated the anti-asthmatic effects of a Codonopsis lanceolata extract (CLE) and the mechanisms involved in its anti-inflammatory effects. Treatment with CLE reduced infiltration of inflammatory cells, especially eosinophils, and the production of mucus in lung tissues. Levels of Th2 cytokines, such as IL-4, IL-5, and IL-13, and chemokines were also decreased following treatment with CLE. Moreover, Th2 cell proportion in vivo and differentiation in vitro were reduced as evidenced by the decreased expression of GATA3+. Furthermore, the expression of superoxide dismutase (SOD)2, a mitochondrial ROS (mROS) scavenger, was increased, which was related to Th2 cell regulation. Interestingly, treatment with CLE increased the number of macrophages in the lungs and enhanced the immune-suppressive property of macrophages. Our findings indicate that CLE has potential as a novel therapeutic agent to inhibit Th2 cell differentiation by regulating mROS scavenging.


Codonopsis/chemistry , Plant Extracts/pharmacology , Th2 Cells/drug effects , Th2 Cells/metabolism , Animals , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Asthma/metabolism , Blotting, Western , Bronchoalveolar Lavage Fluid/chemistry , Chemokine CCL26/metabolism , Female , Interleukin-13/metabolism , Interleukin-4/metabolism , Interleukin-6/metabolism , Lung/drug effects , Lung/metabolism , Mice , Plant Extracts/therapeutic use , Pulmonary Eosinophilia/drug therapy , Pulmonary Eosinophilia/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
15.
J Ethnopharmacol ; 232: 165-175, 2019 Mar 25.
Article En | MEDLINE | ID: mdl-30552991

ETHNOPHARMACOLOGICAL RELEVANCE: Anthriscus sylvestris L. Hoffmann (AS) is a perennial plant that grows in Asia and Eastern Europe. Its dried root is used to treat conditions such as asthma, bronchitis, and cough. AIM OF THE STUDY: The present study investigated the anti-inflammatory effects of whole AS extract (ASE) on allergic lung inflammation in vitro and in vivo as well as the underlying mechanisms. MATERIALS AND METHODS: We used an ovalbumin (OVA)-induced asthma mouse model and in vitro primary T helper (Th)2 polarization system. Five groups of 8-week-old female C57BL/6 mice were divided into the following groups: saline control, or OVA-induced allergic asthma with vehicle, ASE (100 or 200 mg/kg), or dexamethasone (5 mg/kg) treatment for 7 days. RESULTS: ASE attenuated mucus secretion in airway epithelial cells, inflammatory cell infiltration, eosinophilia, and Th2 cytokine levels in bronchoalveolar lavage fluid. Mice administered ASE showed reductions in the activated cluster of differentiation 4+ T cell population and GATA-binding protein-3 gene expression in the lung, and diminished Th2 cell differentiation and activation in vitro. Furthermore, ASE-treated mice showed decreased interleukin-6 and interferon regulatory factor (IRF)4 expression, with corresponding reductions in nitric oxide levels in the lungs of asthmatic mice and in stimulated RAW cells. CONCLUSION: ASE exerts anti-asthmatic effects by inhibiting IRF4 expression and thereby suppressing Th2 cell activation.


Anti-Asthmatic Agents , Anti-Inflammatory Agents , Apiaceae , Asthma/drug therapy , Plant Extracts , Th2 Cells/drug effects , Allergens/immunology , Animals , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Asthma/immunology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cytokines/immunology , Female , Interferon Regulatory Factors/immunology , Mice , Mice, Inbred C57BL , Ovalbumin/immunology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Roots , RAW 264.7 Cells , Th2 Cells/immunology
16.
Molecules ; 23(11)2018 Nov 05.
Article En | MEDLINE | ID: mdl-30400597

Asthma, a heterogeneous disease of the airways, is common around the world, but little is known about the molecular mechanisms underlying the interactions between DNA methylation and gene expression in relation to this disease. The seeds of Descurainia sophia are traditionally used to treat coughs, asthma and edema, but their effects on asthma have not been investigated by multi-omics analysis. We undertook this study to assess the epigenetic effects of ethanol extract of D. sophia seeds (DSE) in an ovalbumin (OVA)-induced mouse model of asthma. We profiled genome-wide DNA methylation by Methyl-seq and characterized the transcriptome by RNA-seq in mouse lung tissue under three conditions: saline control, OVA-induced, and DSE-treated. In total, 1995 differentially methylated regions (DMRs) were identified in association with anti-asthmatic effects, most in promoter and coding regions. Among them, 25 DMRs were negatively correlated with the expression of the corresponding 18 genes. These genes were related to development of the lung, respiratory tube and respiratory system. Our findings provide insights into the anti-asthmatic effects of D. sophia seeds and reveal the epigenetic targets of anti-inflammatory processes in mice.


Anti-Asthmatic Agents/pharmacology , Brassicaceae/chemistry , Epigenesis, Genetic/drug effects , Plant Extracts/pharmacology , Seeds/chemistry , Animals , Anti-Asthmatic Agents/chemistry , Asthma/drug therapy , Asthma/immunology , Asthma/pathology , Computational Biology/methods , DNA Methylation , Disease Models, Animal , Gene Expression Profiling , Gene Regulatory Networks , Mice , Ovalbumin/adverse effects , Ovalbumin/immunology , Plant Extracts/chemistry , Transcriptome
17.
Nutrients ; 10(6)2018 Jun 11.
Article En | MEDLINE | ID: mdl-29891807

Peucedanum japonicum Thunberg is an herbal medicine used to treat neuralgia, rheumatoid arthritis, and inflammatory-related diseases. However, its effects on osteoarthritis (OA) and its regulatory mechanisms have not been investigated by network analysis. Here, we investigated the pharmacological effects of Peucedanum japonicum extract (PJE) on OA, by combining in vivo effective verification and network pharmacology prediction. Rats in which OA was induced by monosodium iodoacetate (MIA) were treated with PJE (200 mg/kg), and histopathological parameters, weight bearing distribution and inflammatory factors in serum and joint tissue were measured after 28 days of treatment. Additionally, in silico network analysis was used to predict holistic OA regulatory mechanisms of PJE. The results showed that PJE exerted potential protective effects by recovering hind paw weight bearing distribution, alleviating histopathological features of cartilage and inhibiting inflammatory mediator levels in the OA rat model. Furthermore, network analysis identified caspase-3 (CASP3), caspase-7 (CASP7), and cytochrome P450 2D6 (CYP2D6) as potential target genes; in addition, the TNF (Tumor necrosis factor) signaling pathway was linked to OA therapeutic action. Our combined animal OA model and network analysis confirmed the therapeutic effects of PJE against OA and identified intracellular signaling pathways, active compounds and target genes linked to its therapeutic action.


Anti-Inflammatory Agents/pharmacology , Apiaceae , Joints/drug effects , Osteoarthritis/drug therapy , Plant Extracts/pharmacology , Systems Biology/methods , Animals , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacokinetics , Apiaceae/chemistry , Caspase 3/genetics , Caspase 3/metabolism , Caspase 7/genetics , Caspase 7/metabolism , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Disease Models, Animal , Gene Regulatory Networks , Inflammation Mediators/blood , Iodoacetic Acid , Joints/metabolism , Joints/pathology , Male , Osteoarthritis/blood , Osteoarthritis/chemically induced , Osteoarthritis/pathology , Phytotherapy/methods , Plant Extracts/isolation & purification , Plant Extracts/pharmacokinetics , Plants, Medicinal , Protein Interaction Maps , Rats, Sprague-Dawley , Signal Transduction/drug effects , Time Factors
18.
J Ethnopharmacol ; 221: 151-159, 2018 Jul 15.
Article En | MEDLINE | ID: mdl-29698773

ETHNOPHARMACOLOGICAL RELEVANCE: Yijin-Tang (YJT) is a traditional prescription for the treatment of hyperlipidaemia, atherosclerosis and other ailments related to dampness phlegm, a typical pathological symptom of abnormal body fluid metabolism in Traditional Korean Medicine. However, a holistic network pharmacology approach to understanding the therapeutic mechanisms underlying hyperlipidaemia and atherosclerosis has not been pursued. AIM OF THE STUDY: To examine the network pharmacological potential effects of YJT on hyperlipidaemia and atherosclerosis, we analysed components, performed target prediction and network analysis, and investigated interacting pathways using a network pharmacology approach. MATERIALS AND METHODS: Information on compounds in herbal medicines was obtained from public databases, and oral bioavailability and drug-likeness was screened using absorption, distribution, metabolism, and excretion (ADME) criteria. Correlations between compounds and genes were linked using the STITCH database, and genes related to hyperlipidaemia and atherosclerosis were gathered using the GeneCards database. Human genes were identified and subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. RESULTS: Network analysis identified 447 compounds in five herbal medicines that were subjected to ADME screening, and 21 compounds and 57 genes formed the main pathways linked to hyperlipidaemia and atherosclerosis. Among them, 10 compounds (naringenin, nobiletin, hesperidin, galangin, glycyrrhizin, homogentisic acid, stigmasterol, 6-gingerol, quercetin and glabridin) were linked to more than four genes, and are bioactive compounds and key chemicals. Core genes in this network were CASP3, CYP1A1, CYP1A2, MMP2 and MMP9. The compound-target gene network revealed close interactions between multiple components and multiple targets, and facilitates a better understanding of the potential therapeutic effects of YJT. CONCLUSIONS: Pharmacological network analysis can help to explain the potential effects of YJT for treating dampness phlegm-related diseases such as hyperlipidaemia and atherosclerosis.


Atherosclerosis/genetics , Hyperlipidemias/genetics , Medicine, Korean Traditional , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Gene Regulatory Networks , Humans , Phytochemicals/analysis , Phytochemicals/pharmacokinetics , Plant Extracts/analysis , Plant Extracts/pharmacokinetics
19.
J Ethnopharmacol ; 211: 78-88, 2018 Jan 30.
Article En | MEDLINE | ID: mdl-28919220

ETHNOPHARMACOLOGICAL RELEVANCE: The root of Peucedanum japonicum Thunberg is traditionally used to treat coughs, colds, headache and inflammatory diseases in Korea and Japan. Its effects on allergic lung inflammation have not been investigated. AIM OF THE STUDY: To investigate the anti-asthmatic effects of Peucedanum japonicum extract (PJE) using a murine model of asthma and a lipopolysaccharide (LPS)-stimulated macrophage cell line. MATERIALS AND METHODS: Mice underwent two rounds of sensitization with ovalbumin 1 week apart followed by four intranasal ovalbumin challenges on days 13-16. The control group received saline only. Two ovalbumin-sensitized groups were orally administered vehicle or PJE (200mg/kg) 5 days a week starting 1 week before the first ovalbumin sensitization. The third group was orally administered the asthma medication Montelukast (10mg/kg) on days 12-16. All animals were sacrificed on day 17. The lungs were assessed for histological features, inflammatory cell infiltration, Th2 cell activation and GATA-binding protein-3 (GATA-3) expression. The bronchoalveolar lavage fluid (BALF) was assessed for type 2 cytokine levels. The effect of PJE on the in vitro Th2 polarization of naïve CD4+ splenocytes and the production of pro-inflammatory mediators and cytokines by LPS-stimulated RAW 264.7 cells was evaluated. RESULTS: PJE treatment inhibited OVA-induced inflammatory cell infiltration, eosinophilia, Th2 activation, and GATA-3 expression in the lung, reduced the interleukin (IL)-5 and IL-13 levels in BALF, down-regulated Th2 activation in vitro, and inhibited the macrophage production of inducible nitric oxide, cyclooxygenase-2, tumor necrosis factor-α, and IL-6. CONCLUSION: PJE attenuated allergic airway inflammation by inhibiting Th2 cell activation and macrophage production of inflammatory mediators. Peucedanum japonicum may be candidate therapy for allergic lung inflammation.


Anti-Asthmatic Agents/therapeutic use , Apiaceae , Asthma/drug therapy , Plant Extracts/therapeutic use , Allergens , Animals , Anti-Asthmatic Agents/pharmacology , Asthma/immunology , Asthma/pathology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Cell Count , Cell Survival/drug effects , Cytokines/immunology , Female , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , Ovalbumin , Plant Extracts/pharmacology , Plant Roots , RAW 264.7 Cells , Th2 Cells/drug effects , Th2 Cells/immunology
20.
J Ethnopharmacol ; 196: 75-83, 2017 Jan 20.
Article En | MEDLINE | ID: mdl-27965051

ETHNOPHARMACOLOGICAL EVIDENCE: Peucedani Radix (PR), the root of Peucedanum praeruptorum Dunn (PPD) or Peucedanum decursivum (Miq.) Maxim. (PDM), has long been used in Korea to eliminate sputum, relieve cough, and reduce bronchus contraction. Furthermore, these therapeutic strategies are recognized as general and effective methods in western medicine as well as traditional Korean medicine. AIM OF THE STUDY: To determine and compare the anti-inflammatory effects of PPD extracts (PPDE) and PDM extracts (PDME) on allergic lung inflammation, using in vivo OVA-induced airway inflammation in mice and in vitro primary cell culture systems. MATERIALS AND METHODS: Eight-week-old female C57BL/6 mice were placed into four groups (n=4 per group): saline control, OVA-induced allergic lung inflammation with vehicle, or PPDE (200mg/kg) or PDME (200mg/kg) treatment. PR extracts (PRE) were administered from 1 week before 1st OVA sensitization to the day before sacrifice. Mice were sacrificed 18h after last OVA intra-nasal challenge followed by histological and biochemical analyses. RESULTS: Inflammatory phenotypes were alleviated with oral administration of PRE. PRE treatment decreased mucus production in airway epithelium, inflammatory cell number, eosinophilia, type 2 cytokines, and histamine in bronchoalveolar lavage fluid (BALF). Mice with PRE administration showed diminished activated CD4 T cell (CD4+CD25+ cell) and GATA-3 level in the lung. In addition, PRE treatment reduced Th2 cell activation in vitro, using Th2 polarization system. CONCLUSION: Our findings indicate that the anti-inflammatory effects of PRE arise from reduced Th2 cell activation and validate the clinical use of PR in traditional Korean medicine.


Anti-Asthmatic Agents/therapeutic use , Apiaceae , Asthma/drug therapy , Plant Extracts/therapeutic use , Allergens/immunology , Animals , Anti-Asthmatic Agents/pharmacology , Asthma/immunology , Asthma/pathology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Cell Count , Cytokines/immunology , Eosinophilia/drug therapy , Eosinophilia/immunology , Eosinophilia/pathology , Female , GATA3 Transcription Factor/immunology , Histamine/immunology , Immunoglobulin E/blood , Lung/drug effects , Lung/immunology , Lung/pathology , Mice, Inbred C57BL , Mucus/metabolism , Ovalbumin/immunology , Plant Extracts/pharmacology , Plant Roots
...