Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 20(38): 24796-24806, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30229763

RESUMEN

Apart from being an analogue of the prototype for photoinduced intramolecular charge transfer (ICT), 2-ethylhexyl 4-dimethylaminobenzoate (EHDMABA) is also one of the earliest patented and most commonly used sunscreen components. There is, however, little documented information about the photophysics and factors affecting the photophysics of this molecule. Such information is of importance for both the understanding of the ICT reaction and assessing the underlying process of photoprotection, especially in view of the "sunscreen controversy" that has arisen from the contrasting in vivo vs. in vitro photobiological results on this and related UV filters. We report herein a femtosecond broadband time-resolved fluorescence (fs-TRF), complemented by transient absorption (fs-TA) to allow a full probe of the excited state cascades for EHDMABA and two of its derivatives in solvents of varied properties. The results provide direct evidence for a nearly solvent independent inner sphere ICT reaction occurring on the sub-picosecond time scale, and an ensuing solvent dictated deactivation of the ICT state. The ICT state in the aprotic solvent acetonitrile decayed solely through the intrinsic intersystem crossing (ISC) to produce a potentially harmful triplet excited state. In the protic solvent, the solvation and formation of ICT-induced solute-solvent hydrogen (H)-bonding opened the originally inaccessible internal conversion (IC) channel of the ICT state, leading to the rapid reformation of the ground state molecule with a unitary efficiency in the aqueous solution. This H-bonding-mediated IC restrained or eliminated the intrinsic ISC, providing a mechanism at the molecular level for the benign dissipation of the electronic excitation. The precise rate of IC was observed to vary with the alkoxy substituent and its efficiency was affected by the H-bonding capacity of the solvent. The findings of this work demonstrate the pivotal role of the microenvironment and the direct participation of solvent molecules through H-bonding in drastically altering the nonradiative dynamics and promoting or inhibiting photostability and photoprotection. This may assist in developing next-generation UV filters and help in improving formulation design for the optimal efficacy of sunscreen products. The pronounced H-bonding-induced fluorescence quenching and variation in the fluorescence wavelength imply that these molecules may also serve as a sensitive fluorescence probe for the H-bonding properties of the microenvironment.


Asunto(s)
Luz , Protectores Solares/farmacología , para-Aminobenzoatos/farmacología , Colorantes Fluorescentes/química , Enlace de Hidrógeno , Espectrometría de Fluorescencia , Protectores Solares/efectos adversos , Protectores Solares/química , para-Aminobenzoatos/efectos adversos , para-Aminobenzoatos/química
2.
Chem Asian J ; 13(23): 3706-3717, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30230251

RESUMEN

i-Motifs are tetraplex DNAs known to be stable at acidic pH. The structure of i-motifs is important in DNA nanotechnology; i-motif-forming sequences with consecutive cytosine (C) molecules are abundant throughout the human genome. There is, however, little information on the structure of C-rich DNAs under physiologically relevant neutral conditions. The electron dynamics of i-motifs, crucial to both biology and materials applications, also remains largely unexplored. In this work, we report a combined femtosecond and nanosecond broadband time-resolved fluorescence (TRF) and steady-state fluorescence investigation on homo-oligomer dC20 , a human telomeric sequence (HTS) 5'-dC3 (TA2 C3 )3 , and its analogue performed with different excitation at both acidic and neutral pH. Our study provides direct observation of intrinsic fluorescence and the first full probe of the real-time dynamics of the intrinsic fluorescence from i-motifs formed from varied sequences and pH conditions. The results obtained demonstrate concrete evidence for the existence at neutral pH of i-motifs from both dC20 and the HTS. It also identifies that, under neutral conditions, the i-motif from dC20 adopting the bimolecular folding structure is significantly more stable than the HTS i-motif featuring the unimolecular topology. Our femtosecond and nanosecond TRF study unveils excitation dynamics distinctive of the interdigitated architecture of i-motifs with the excited states involved exhibiting deactivation over a remarkably broad timescale through multiple channels involving proton-coupled electron transfer lasting tens of picoseconds, as signified by the solvent kinetic isotope effect, and structure-dependent charge recombination in the hundreds of picoseconds to tens of nanoseconds time regime.


Asunto(s)
ADN/química , Oligodesoxirribonucleótidos/química , Fluorescencia , Humanos , Concentración de Iones de Hidrógeno , Cinética , Conformación de Ácido Nucleico , Espectrometría de Fluorescencia/métodos
3.
Phys Chem Chem Phys ; 20(2): 1240-1251, 2018 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-29250640

RESUMEN

As a case study of the interplay and the consequence of the interplay between intramolecular charge transfer (ICT) and intermolecular hydrogen (H)-bonding, a combined femtosecond time-resolved fluorescence (fs-TRF) and density functional theoretical (DFT) and time-dependent DFT (TDDFT) study has been conducted on methyl dimethylaminobenzoate (MDMABA) largely in a water solvent. Direct observation of the broadband spectra, anisotropy, and kinetic decays of fs-TRF from photo-excited MDMABA revealed a rapid ICT reaction occurring with a time constant of ∼0.7 ps from an initial locally excited (LE) state identified to have the Laππ* character; this produced a weakly emissive ICT state featuring radiative rate constant decreased by more than two orders of magnitude. The fluorescence of the ICT state is strongly quenched exhibiting a decay time of ∼49.7 ps, unusually faster than the nanosecond range lifetime in a polar aprotic solvent when intersystem crossing (ISC) is the major deactivation channel. This, according to the study of the solvent kinetic isotope effect, is identified to originate from an instantly enhanced strong solute-solvent H-bonding induced by the ICT reaction which allows elimination of the ISC, and enables the nonradiative decay to proceed almost entirely through the otherwise inaccessible internal conversion from the ICT state. The enhancement of H-bonding is verified by the calculation which presents theoretical evidence for not only the binding site and binding energy of the H-bonding configuration but also the electronic and structural characterization, lending support to the twisted ICT (TICT) description of the photo-excited MDMABA. This study contributes a prominent example for the extraordinary ability of water and a decisive role of ICT promoted H-bonding in offering a highly effective molecular mechanism for rapid elimination of the electronic excitation energy. The results contain an important insight for the in-depth understanding of the excited state H-bonding dynamics, and also have significant implication for clarifying the "sunscreen controversy" of the DMABA type of UVB sunscreen molecule.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA