Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
J Vet Sci ; 25(1): e4, 2024 Jan.
Article En | MEDLINE | ID: mdl-38311319

BACKGROUND: Lawsonia intracellularis is the causative agent of proliferative enteropathy and is associated with several outbreaks, causing substantial economic loss to the porcine industry. OBJECTIVES: In this study, we focused on demonstrating the protective effect in the mouse model through the immunological bases of two vaccine strains against porcine proliferative enteritis. METHODS: We used live-attenuated Salmonella Typhimurium (ST) secreting two selected immunogenic LI antigens (Lawsonia autotransporter A epitopes and flagellin [FliC]-peptidoglycan-associated lipoprotein-FliC) as the vaccine carrier. The constructs were cloned into a Salmonella expression vector (pJHL65) and transformed into the ST strain (JOL912). The expression of immunogenic proteins within Salmonella was evaluated via immunoblotting. RESULTS: Immunizing BALB/c mice orally and subcutaneously induced high levels of LI-specific systemic immunoglobulin G and mucosal secretory immunoglobulin A. In immunized mice, there was significant upregulation of interferon-γ and interleukin-4 cytokine mRNA and an increase in the subpopulations of cluster of differentiation (CD) 4+ and CD 8+ T lymphocytes upon splenocytes re-stimulation with LI antigens. We observed significant protection in C57BL/6 mice against challenge with 106.9 times the median tissue culture infectious dose of LI or 2 × 109 colony-forming units of the virulent ST strain. Immunizing mice with either individual vaccine strains or co-mixture inhibited bacterial proliferation, with a marked reduction in the percentage of mice shedding Lawsonia in their feces. CONCLUSIONS: Salmonella-mediated LI gene delivery induces robust humoral and cellular immune reactions, leading to significant protection against LI and salmonellosis.


Lawsonia Bacteria , Rodent Diseases , Swine Diseases , Vaccines , Mice , Animals , Swine , Disease Models, Animal , Mice, Inbred C57BL , Salmonella typhimurium , Mice, Inbred BALB C , Swine Diseases/prevention & control
2.
J Anim Sci Technol ; 65(2): 401-411, 2023 Mar.
Article En | MEDLINE | ID: mdl-37093902

Many studies have been conducted to improve technology for semen cryopreservation in pigs. However, computer-assisted analysis of sperm motility and morphology is insufficient to predict the molecular function of frozen-thawed semen. More accurate expression patterns of boar sperm proteins may be derived using the isobaric tags for relative and absolute quantification (iTRAQ) technique. In this study, the iTRAQ-labeling system was coupled with liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis to identify differentially expressed CM10-fractionated proteins between fresh and frozen-thawed boar semen. A total of 76 protein types were identified to be differentially expressed, among which 9 and 67 proteins showed higher and lower expression in frozen-thawed than in fresh sperm samples, respectively. The classified functions of these proteins included oxidative phosphorylation, mitochondrial inner membrane and matrix, and pyruvate metabolic processes, which are involved in adenosine triphosphate (ATP) synthesis; and sperm flagellum and motile cilium, which are involved in sperm tail structure. These results suggest a possible network of biomarkers associated with survival after the cryopreservation of Duroc boar semen.

3.
Vet Med Sci ; 9(1): 307-314, 2023 01.
Article En | MEDLINE | ID: mdl-36399368

BACKGROUND: Ketosis is a common metabolic disorder during the post-partum transition period of dairy cattle. How the method of reproduction, parturition time, and calf birth weight affect the occurrence of ketosis on dairy herds remains elusive. OBJECTIVES: This study investigated factors associated with the severity of ketosis. METHODS: We divided 186 Holstein cows into three classifications based on the highest ß-hydroxybutyrate (BHBA) concentration during the post-partum transition period, namely non-ketosis (<1.2 mmol/L, n = 94), subclinical ketosis (1.2-2.9 mmol/L, n = 58), and clinical ketosis (≥3.0 mmol/L, n = 34). We evaluated characteristics of cows associated with the severity of ketosis. RESULTS: Ketosis was not associated with the method of reproduction, parturition time, pregnancy wastage, premature delivery, retained placenta, and type of calf. Cows calving in spring and especially summer were at higher risk of severe ketosis (p < 0.01). Cows with increased body condition score (BCS) at parturition, age, lactation number, and calving interval were more likely to develop severe ketosis (p < 0.05). Cows with clinical ketosis produced most milk (29.9 ± 1.0 kg) from days four to six, whereas cows without ketosis produced the least (21.3 ± 0.8 kg) (p < 0.001). Heavier calf birth weight resulted in high risk of severe ketosis (p < 0.01), due to increased milk yield during the early lactation. CONCLUSIONS: The severity of ketosis is associated with the calving season, BCS at parturition, age, lactation number, calving interval, milk yield in the early lactation period, and calf birth weight. Nonetheless, it was not associated with the method of reproduction, parturition time, pregnancy wastage, premature delivery, retained placenta, and type of calf. This study is the first to investigate the associations between ketosis and calf birth weight. Our findings could help predict cows at risk of ketosis and take precautions.


Ketosis , Placenta, Retained , Pregnancy , Female , Cattle , Animals , Placenta, Retained/veterinary , Birth Weight , Postpartum Period , Lactation , Reproduction , Ketosis/epidemiology , Ketosis/veterinary , Ketosis/metabolism
4.
Sci Rep ; 12(1): 853, 2022 01 17.
Article En | MEDLINE | ID: mdl-35039562

Ketosis often occurs during the postpartum transition period in dairy cows, leading to economic and welfare problems. Previously, ketosis was reported to be associated with hematological and serum biochemical parameters. However, the association between the parameters on the calving date and ketosis during the postpartum transition period remains unclear. This study aimed to investigate this association. Blood samples were collected from the jugular vein of Holstein cows on the calving date and ß-hydroxybutyrate was tested once every 3 days (8 times in 21 days). The cows were divided into three groups: non-ketosis, subclinical ketosis, and clinical ketosis. The clinical ketosis group significantly had the highest values of mean corpuscular volume, mean corpuscular hemoglobin, ß-hydroxybutyrate, non-esterified fatty acids, and total bilirubin, but the lowest values of red cell distribution width, the counts of white blood cell, monocyte, and eosinophil, albumin, alanine transaminase, lactate dehydrogenase, and amylase. In contrast, the non-ketosis group showed the opposite results (p < 0.05). In conclusion, these parameters are associated with the development and severity of ketosis. Our findings suggest that these parameters on the calving date may be useful indicators to identify dairy Holstein cow susceptible to ketosis during the transition period.


3-Hydroxybutyric Acid/blood , Cattle Diseases/blood , Cattle Diseases/diagnosis , Cattle/blood , Disease Susceptibility/diagnosis , Disease Susceptibility/veterinary , Ketosis/diagnosis , Ketosis/veterinary , Postpartum Period , Animals , Biomarkers/blood , Cattle Diseases/etiology , Female , Ketosis/blood , Ketosis/etiology , Patient Acuity , Predictive Value of Tests , Pregnancy
5.
Front Vet Sci ; 8: 773902, 2021.
Article En | MEDLINE | ID: mdl-34869746

Currently, ketosis has no fully satisfactory resolution in dairy cows. Here, we investigated the effect of levocarnitine or vitamin B complex and E with selenium on clinically ketotic cows (ß-hydroxybutyrate ≥ 3.0 mmol/L and decreased milk yield), fed glycerin. In total, 18 cases of Holstein cows with clinical ketosis during the postpartum transition period were randomly assigned to three treatments (6 cases per group): (1) levocarnitine (C+G), (2) vitamin B complex and E with selenium (VBES+G), and (3) levocarnitine and vitamin B complex and E with selenium (C+VBES+G). All groups were administered glycerin. Treatments were administered daily for 4 days. Blood sampling was performed on the onset day of ketosis (day 0), day 4, and day 6. ß-Hydroxybutyrate (BHBA), milk yield (MY), and serum biochemical values were measured. Half of the animals in C+G failed to overcome clinical ketosis. VBES+G treatment ameliorated BHBA (p < 0.05), MY, and glucose on day 4. However, ketosis was exacerbated following the discontinuation of the treatment. C+VBES+G treatment improved BHBA, glucose (p < 0.05), and MY and reduced ketotic cases on days 4 and 6 with greater improvements compared to the others. In conclusion, combined treatment with levocarnitine, vitamin B complex and E with selenium, and glycerin may have the therapeutic effect on clinical ketosis.

6.
J Anim Sci Technol ; 63(5): 977-983, 2021 Sep.
Article En | MEDLINE | ID: mdl-34796341

Closely correlated expression patterns between ubiquitin specific peptidase 9X-linked (USP9X) and adherens junction formation factor (Afadin) in mouse testis development suggests that Usp9x regulates the deubiquitination of Af-6 (also known as Afadin, AFDN), and subsequently, the cell adhesion dynamics during gametogenesis. However, this relationship has not yet been tested in other domestic animals. The study was examined the temporal and spatial expression patterns of porcine USP9X and AFDN from the pre-pubertal to adult stages using real time-PCR and immunohistochemistry. Furthermore, we detected the transcripts of USP9X and AFDN in the testis of 1-, 6- and 12-months old boar, respectively. USP9X and AFDN were found to have similar expressions patterns, with basal expression after 1 month followed by a significant up-regulation from 6 months (puberty) onwards. In addition, neither the AFDN or USP9X proteins were detected in spermatogenic cells but they were expressed in the leydig cells and sertoli cells. USP9X was detected around the basal lamina during pre-puberty, and predominantly expressed in the leydig cells at puberty. Finally, in adult testis, USP9X was increased at the sertoli cell-cell interface and the sertoli cell-spermatid interface. In summary, closely correlated expression patterns between USP9X and AFDN in boar testis supports the previous findings in mice. Furthermore, the junction connections between the sertoli cells may be regulated by the ubiquitination process mediated via USP9X.

7.
Animals (Basel) ; 11(6)2021 May 28.
Article En | MEDLINE | ID: mdl-34071232

To improve reproductive performance in cattle, the accurate detection of estrus and optimization of insemination relative to ovulation are necessary. However, poor heat detection by farm staff leads to a decreased conception rate, thus inflicting economic damage to the beef and dairy industries. This study aimed to develop monoclonal antibodies (mAb) that can specifically bind to the bovine lactoferrin (bLF) protein, which we have previously demonstrated to be overexpressed in bovine cervical mucus during estrus. Female rats were intraperitoneally immunized with bLF protein as the antigen. Anti-bLF mAbs were then purified by affinity chromatography, and their binding affinity for the bLF antigen was examined using ELISA. We found a high binding affinity between mAbs and bLF. Finally, we developed a rapid bovine heat detection kit using the anti-bLF mAbs that we generated and tested on cervical mucus from 12 cows (estrous synchronization, n = 2; natural cycling, n = 10). We found that the kits accurately detected estrus. Overall, our fabricated heat detection kit based on rat anti-bLF mAbs could pave the way for the development of potent tools for heat detection devices for dairy cattle, thereby preventing economic loss.

8.
Anim Biotechnol ; 32(5): 537-543, 2021 Oct.
Article En | MEDLINE | ID: mdl-32049597

A synthetic progestin altrenogest (ALT) is used to synchronize the estrus cycle of swine for fixed-time artificial insemination (AI) and has been shown to improve follicular development and reproductive performances in post-weaning sows. However, the effects of ALT treatment on reproductive tracts, including the ovaries, oviducts and uterus have not been yet clarified. In this study, we examined the expression of genes involved in endometrial responses in ALT-treated sows. ALT did not significantly alter luteinizing hormone (LH), follicle-stimulating hormone (FSH) and estradiol profiles in blood compared to untreated control. Quantitative RT-polymerase chain reaction (qRT-PCR) analysis showed that the expression of genes encoding galectin-3 (LGALS3) and fibroblast growth factor 9 (FGF9) was upregulated in the reproductive tracts of ALT-treated sows, including the ovaries, oviducts and uteri. Moreover, ALT treatment induced the expression of FGF9 and galectin-3 proteins, and promoted their localization to the luminal epithelium of the oviducts and uterus. Our findings suggest that the enhancement of reproductive performance shown by ALT-treated sows is associated with the upregulation of galectin-3 and FGF9, which are essential for endometrial receptivity, successful implantation, and pregnancy.


Fibroblast Growth Factor 9 , Galectin 3 , Swine/genetics , Trenbolone Acetate , Animals , Female , Fibroblast Growth Factor 9/metabolism , Follicle Stimulating Hormone , Galectin 3/metabolism , Insemination, Artificial/veterinary , Ovary/drug effects , Ovary/metabolism , Oviducts/drug effects , Oviducts/metabolism , Pregnancy , Trenbolone Acetate/analogs & derivatives , Trenbolone Acetate/pharmacology , Uterus/drug effects , Uterus/metabolism
9.
Asian-Australas J Anim Sci ; 33(7): 1077-1086, 2020 Jul.
Article En | MEDLINE | ID: mdl-32054197

OBJECTIVE: We examined the localization and expression of H+ pumping vacuolar ATPase (V-ATPase) and cytokeratin 5 (KRT5) in the epididymis of pigs, expressed in clear and basal cells, respectively, during postnatal development. METHODS: Epididymides were obtained from pigs at 1, 7, 21, 60, 120, and 180 days of age; we observed the localization and expression patterns of V-ATPase and KRT5 in the different regions of these organs, namely, the caput, corpus, and cauda. The differentiation of epididymal epithelial cells was determined by immunofluorescence labeling using cell-type-specific markers and observed using confocal microscopy. RESULTS: At postnatal day 5 (PND5), the localization of clear cells commenced migration from the cauda toward the caput. Although at PND120, goblet-shaped clear cells were detected along the entire length of the epididymis, those labeled for V-ATPase had disappeared from the corpus to cauda and were maintained only in the caput epididymis in adult pigs. In contrast, whereas basal cells labeled for KRT5 were only present in the vas deferens at birth, they were detected in all regions of the epididymis at PND60. These cells were localized at the base of the epithelium; however, no basal cells characterized by luminally extending cell projections were observed in any of the adult epididymides examined. CONCLUSION: The differentiation of clear and basal cells progressively initiates in a retrograde manner from the cauda to the caput epididymis. The cell-type-specific distribution and localization of the epithelial cells play important roles in establishing a unique luminal environment for sperm maturation and storage in the pig epididymis.

10.
3 Biotech ; 10(2): 34, 2020 Feb.
Article En | MEDLINE | ID: mdl-31988828

The present study aimed to investigate the characteristics of mPEA15 expressing transgenic pig (TG pig) as a potential model for diabetes. Expression analysis confirmed the ubiquitous expression of mPEA15 in TG pigs at F4. Oral glucose tolerance test results showed that restoration of normal glucose levels was significantly delayed in the TG pigs when compared with that in the wild-type pigs (WT pigs). Primary skeletal muscle cells isolated from TG pigs demonstrated reduced glucose uptake and reduced GLUT4 translocation to the plasma membrane in response to insulin treatment. Combined, these results suggest that mPEA15 expressing pigs has a glucose intolerance and insulin resistance which are known to mediate the pathophysiology of type 2 diabetes mellitus. Thus, mPEA15 transgenic pigs would serve as a promising model for diabetes translational research.

11.
Saudi J Biol Sci ; 26(2): 373-377, 2019 Feb.
Article En | MEDLINE | ID: mdl-31485180

Feed ingredients used in swine diets contain various levels and availabilities of nutrients. Nutritional precision evaluation of each ingredient is necessary for formulating diets of pigs. Especially, phosphorous (P) is one of important nutrients for metabolism. However, current data of P digestibility were most apparent digestibility. Therefore, this study was aimed to estimate the coefficient of total tract standardized digestibility (CTTSD) of P in cereals and various co-products used in pig diet. Twelve barrows (initial BW ±â€¯SD, 46.70 ±â€¯3.21 kg) were used in this experiment. The experimental design was a 12 × 8 incomplete Latin square with 12 diets and 8 periods. Experimental diets were consisted of barley, wheat, lupine kernel (LK), soybean meal (SBM), almond meal (AM), corn gluten meal (CGM), corn gluten feed from China (CGF-C), corn gluten feed from Korea (CGF-C), wheat bran (WB), rice bran (RB), lupine hull (LH) and P-free diet. The CTTAD of Ca was higher in AM than RB and CGF-K. The LK and CGM showed greater CTTSD of P than RB and LH. In conclusion, our results indicated that the cereals and co-products as P sources were the ideally used as an ingredient in mixed diets of the growing-finishing pigs.

12.
Acta Histochem ; 121(7): 784-790, 2019 Oct.
Article En | MEDLINE | ID: mdl-31324385

Male germ cell apoptosis has been described in heat-damaged testes by cryptorchidism. In the present study, wild type pig testes were compared with cryptorchid testes via histological and immunohistological analyses. Spermatozoa were not detected in two cryptorchid testes and the diameters of seminiferous tubules were significantly reduced in cryptorchid pig testes compared with wild type pig testes. Cells expressing marker genes for undifferentiated spermatogonia, such as protein gene product 9.5 was significantly decreased in cryptochid pig testes. In addition, the numbers of cells expressing DEAD-box polypeptide 4 (VASA), synaptonemal complex protein 3, protamine, and acrosin (a biomarker of spermatocyte, spermatid, and spermatozoa) were significantly reduced in cryptochid pig testes. However, the number of vimentin-expressing Sertoli cells was not changed or was significantly increased in cryptorchid pig testes. This result indicates that male germ cells are specifically damaged by heat in cryptorchid pig testes and not Sertoli cells. These findings will facilitate the further study of spermatogenesis and the specific mechanisms by which cryptorchidism causes male infertility.


Cryptorchidism , Gene Expression Regulation , Seminiferous Tubules , Spermatocytes , Acrosin/biosynthesis , Animals , Cryptorchidism/metabolism , Cryptorchidism/pathology , DEAD-box RNA Helicases/biosynthesis , Male , Protamines/metabolism , Seminiferous Tubules/metabolism , Seminiferous Tubules/pathology , Spermatocytes/metabolism , Spermatocytes/pathology , Swine , Synaptonemal Complex/metabolism
13.
Anim Cells Syst (Seoul) ; 23(1): 42-49, 2019 Feb.
Article En | MEDLINE | ID: mdl-30834158

Recently, diabetes mellitus (DM) has shown rapid global increases with about five million deaths annually. Animal models are imperative to understand disease mechanisms and develop diagnostic, preventive, and therapeutic interventions in translational research. Rodent and mini-pig models have been established and widely used for DM research. However, domestic pig models are limited in spite of advantages such as pharmacokinetic and physiopathological availability. This study examines the potential use of domestic pigs expressing recombinant human erythropoietin (rhEPO) as disease and therapeutic response models for DM. We previously generated transgenic pigs (n = 16, EPO Tg) in which rhEPO was expressed and circulated in all organs. Thirty-two pigs, including 16 controls, were fed high fat (HF) diets for 42 weeks. Subsequently, blood samples for chemical and metabolic analysis were collected after fasting for 24 h and glucose loading for oral glucose tolerance tests (OGTTs). We found increased activation of the PI3 K/Akt signaling pathway under hypoxic conditions after rhEPO treatment, and HF diet-inducible-obesity in the EPO Tg and control pigs. OGTTs showed lower fasting glucose levels in the EPO Tg pigs than in controls before and after the HF diet, suggesting that rhEPO may affect glucose concentrations. Insulin and C-peptide concentrations responded slowly to glucose administration and returned to initial levels after 2 h. The blood test results suggest that EPO might affect metabolic and chemical components such as glucose, high-density lipoprotein, glucagon, triglyceride, and free fatty acid. Our findings support the use of rhEPO transgenic domestic pigs as model animals for translational DM research.

14.
Anim Biotechnol ; 30(4): 317-322, 2019 Oct.
Article En | MEDLINE | ID: mdl-30522372

Tissue plasminogen activator (tPA) is a protein involved in the breakdown of blood clots. We have previously produced a human tPA (htPA)-overexpressing transgenic pig using a mammary gland-specific promoter. In this study, we have established a transgenic pig mammary gland cell line that produces recombinant htPA. The mammary gland cells grew well and retained their character over long periods of culture. There was no difference in the extent of apoptosis in transgenic cells compared to wild-type mammary gland cells. In addition, the transgenic mammary gland cells expressed and secreted htPA into the conditioned media at a concentration similar to that in milk. This transgenic cell line represents a simple and ethical method for recombinant htPA production.


Mammary Glands, Animal/metabolism , Tissue Plasminogen Activator/biosynthesis , Animals , Animals, Genetically Modified , Cell Line , Cells, Cultured , Female , Humans , Milk/metabolism , Promoter Regions, Genetic , Recombinant Proteins/biosynthesis , Swine/genetics , Tissue Plasminogen Activator/genetics
15.
Anim Reprod Sci ; 190: 18-26, 2018 Mar.
Article En | MEDLINE | ID: mdl-29338902

Spermatogenesis begins with spermatogonial stem cells (SSCs), which are located in the basement membrane of the adult testes. Previous studies have described specific biomarkers for undifferentiated porcine spermatogonia or SSCs; however, these markers are not sufficient to understand spermatogenesis at different developmental stages. The objective of this study was characterize the expression of DEAD-Box polypeptide 4 (DDX4, also known as VASA) and tyrosine-protein kinase kit (c-kit), as potential markers of male germ cells in the porcine testis. In porcine testis tissue at prepubertal stages (5, 30, and 60 days), DDX4 and c-kit protein expression was detected in the most undifferentiated spermatogonia, which also express protein gene product 9.5 (PGP9.5). However, in porcine testis tissues from pubertal and postpubertal stages (90, 120, and 150 days), DDX4 and c-kit were not detected in PGP9.5-positive undifferentiated spermatogonia. The DDX4 expression pattern was similar to that of c-kit in the porcine testis. In adult porcine testes, DDX4-expressing cells were located on the lumenal side, compared to synaptonemal complex protein 3-positive primary spermatocytes, but DDX-4 was not co-expressed with acrosin, a known acrosome marker. In addition, DDX4 was detected in PGP9.5-expressing porcine SSCs in culture. Based on our results, we suggest that DDX4 and c-kit are putative markers of undifferentiated spermatogonia in the prepubertal porcine testis. While in the postpubertal porcine testis, they are markers of differentiated spermatocytes. These findings may facilitate future studies of porcine spermatogenesis.


DEAD-box RNA Helicases/metabolism , Gene Expression Regulation, Developmental/physiology , Proto-Oncogene Proteins c-kit/metabolism , Spermatogenesis/physiology , Swine/physiology , Testis/growth & development , Acrosin , Animals , Biomarkers , DEAD-box RNA Helicases/genetics , Male , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-kit/genetics , Sexual Maturation , Swine/growth & development , Swine/metabolism , Testis/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
16.
PLoS One ; 12(8): e0182322, 2017.
Article En | MEDLINE | ID: mdl-28813459

Several ß2-microglobulin (B2M) -bound protein complexes undertake key roles in various immune system pathways, including the neonatal Fc receptor (FcRn), cluster of differentiation 1 (CD1) protein, non-classical major histocompatibility complex (MHC), and well-known MHC class I molecules. Therefore, the duplication of B2M may lead to an increase in the biological competence of organisms to the environment. Based on the pig genome assembly SSC10.2, a segmental duplication of ~45.5 kb, encoding the entire B2M protein, was identified in pig chromosome 1. Through experimental validation, we confirmed the functional duplication of the B2M gene with a completely identical coding sequence between two copies in pigs. Considering the importance of B2M in the immune system, we performed the phylogenetic analysis of B2M duplication in ten mammalian species, confirming the presence of B2M duplication in cetartioldactyls, like cattle, sheep, goats, pigs and whales, but non-cetartiodactyl species, like mice, cats, dogs, horses, and humans. The density of long interspersed nuclear element (LINE) at the edges of duplicated blocks (39 to 66%) was found to be 2 to 3-fold higher than the average (20.12%) of the pig genome, suggesting its role in the duplication event. The B2M mRNA expression level in pigs was 12.71 and 7.57 times (2-ΔΔCt values) higher than humans and mice, respectively. However, we were unable to experimentally demonstrate the difference in the level of B2M protein because species specific anti-B2M antibodies are not available. We reported, for the first time, the functional duplication of the B2M gene in animals. The identification of partially remaining duplicated B2M sequences in the genomes of only cetartiodactyls indicates that the event was lineage specific. B2M duplication could be beneficial to the immune system of pigs by increasing the availability of MHC class I light chain protein, B2M, to complex with the proteins encoded by the relatively large number of MHC class I heavy chain genes in pigs. Further studies are necessary to address the biological meaning of increased expression of B2M.


Gene Duplication , Mammals/genetics , Selection, Genetic , beta 2-Microglobulin/genetics , Animals , Base Sequence , Cell Line , DNA, Complementary , Gene Expression , Genome , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine , beta 2-Microglobulin/metabolism
17.
Biochem Biophys Res Commun ; 487(3): 532-538, 2017 06 03.
Article En | MEDLINE | ID: mdl-28412366

We demonstrated that ETV4 is a transcriptional activator of the NANOG gene in human embryonic carcinoma NCCIT cells. The endogenous expression of NANOG and ETV4 in naïve cells was significantly down-regulated upon differentiation and by shRNA-mediated knockdown of ETV4. NANOG transcription was significantly upregulated by ETV4 overexpression. A putative ETS binding site (EBS) is present in the region (-285 to -138) of the proximal promoter. Site-directed mutagenesis of the putative EBS (-196AGGATT-191) abolished NANOG promoter activity and ETV4 interacted with this putative EBS both in vivo and in vitro. Our data provide the molecular details of ETV4-mediated NANOG gene expression.


Adenovirus E1A Proteins/metabolism , Embryonal Carcinoma Stem Cells/metabolism , Gene Expression Regulation, Neoplastic , Nanog Homeobox Protein/genetics , Proto-Oncogene Proteins/metabolism , Humans , Nanog Homeobox Protein/metabolism , Proto-Oncogene Proteins c-ets , Tumor Cells, Cultured
18.
Gen Physiol Biophys ; 36(1): 31-39, 2017 Jan.
Article En | MEDLINE | ID: mdl-27901471

Esculetin, a coumarin derivative, is a phenolic compound isolated from Artemisia capillaris, Citrus limonia, and Euphorbia lathyris. Although it has been reported to have anti-inflammatory, anti-oxidant, and anti-proliferative activities in several human cancers, its anti-proliferative activity against non-small-cell lung carcinoma (NSCLC) and the molecular mechanisms involved have not been adequately elucidated. In this study, we used two NSCLC cell lines (NCI-H358 and NCI-H1299) to investigate the anti-proliferative activity and apoptotic effect of esculetin. Our data showed that esculetin-treated cells exhibited reduced proliferation and apoptotic cell morphologies. Intriguingly, the transcription factor specificity protein 1 (Sp1) was significantly suppressed by esculetin in a dose- and time-dependent manner. Furthermore, the levels of p27 and p21, two key regulators of the cell cycle, were up-regulated by the esculetin-mediated down-regulation of Sp1; the level of a third cell-cycle regulator, survivin, was decreased, resulting in caspase-dependent apoptosis. Therefore, we conclude that esculetin could be a potent anti-proliferative agent in patients with NSCLC.


Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Sp1 Transcription Factor/metabolism , Umbelliferones/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology
19.
Biol Pharm Bull ; 39(11): 1802-1808, 2016.
Article En | MEDLINE | ID: mdl-27803451

Growth and differentiation factor 3 (GDF3), a mammalian-specific transforming growth factor ß ligand, and OCT4, one of key stem cell transcription factors, are expressed in testicular germ cell tumors (TGCTs) as well as pluripotent stem cells. To understand the molecular mechanism by which OCT4 and GDF3 function in tumorigenesis as well as stemness, we investigated the transcriptional regulation of GDF3 mediated by OCT4 in human embryonic carcinoma (EC) NCCIT cells, which are pluripotent stem cells of TGCTs. GDF3 and OCT4 was highly expressed in undifferentiated NCCIT cells and then significantly decreased upon retinoic acid-induced differentiation in a time-dependent manner. Moreover, GDF3 expression was reduced by short hairpin RNA-mediated knockdown of OCT4 and increased by OCT4 overexpression, suggesting that GDF3 and OCT4 have a functional relationship in pluripotent stem cells. A promoter-reporter assay revealed that the GDF3 promoter (-1721-Luc) activity was significantly activated by OCT4 in a dose-dependent manner. Moreover, the minimal promoter (-183-Luc) was sufficient for OCT4-mediated transcriptional activation and provided a potential binding site for the direct interaction with OCT4. Collectively, this study provides the evidence about the regulatory mechanism of GDF3 mediated by OCT4 in pluripotent EC cells.


Carcinoma, Embryonal/genetics , Growth Differentiation Factor 3/genetics , Octamer Transcription Factor-3/genetics , Testicular Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Male , Octamer Transcription Factor-3/metabolism , Transcription, Genetic
20.
Int J Oncol ; 49(6): 2294-2302, 2016 Dec.
Article En | MEDLINE | ID: mdl-27748804

Kahweol, a diterpene molecule, has antiproliferative effects on several types of human cancer cells, but whether it has apoptotic effect in non-small cell lung cancer (NSCLC) is not known. To explore this possibility, we incubated cells from two NSCLC cell lines, NCI-H358 and NCI­H1299, with different concentrations of kahweol and used the MTS assay, DAPI staining, propidium iodide staining, Annexin V staining, immunocytochemical test, and western blot analysis to characterize this molecule and the signaling pathway underlying its effects. The kahweol-treated cells showed significantly decreased cell viability, increased nuclear condensation, and an increased number of Annexin V-positive NSCLC cells. Suppression of basic transcription factor 3 (BTF3) was followed by apoptosis induced by kahweol via the ERK-mediated signaling pathway in a dose- and time-dependent manner. In addition, kahweol modulated the protein expression of BTF3 genes involved in cell-cycle regulation and apoptosis-related proteins, resulting in apoptotic cell death. Our results collectively indicated that kahweol inhibited the proliferation of NSCLC cells through ERK-mediated signaling pathways and the downregulation of BTF3.


Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation/drug effects , Diterpenes/pharmacology , Lung Neoplasms/metabolism , Nuclear Proteins/biosynthesis , Transcription Factors/biosynthesis , Apoptosis Regulatory Proteins/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Chemoprevention , Down-Regulation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Lung Neoplasms/drug therapy , MAP Kinase Signaling System/drug effects
...