Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Sci Rep ; 13(1): 22694, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123643

RESUMEN

Contact urticaria (CU) is an inflammatory skin disorder triggered by specific substances upon skin contact, leading to immediate acute or chronic manifestations characterized by swelling and redness. While mesenchymal stem cells (MSCs) are increasingly recognized for their therapeutic potential in immune diseases, research on the efficacy and mechanisms of stem cell therapy for urticaria remains scarce. This study investigates the regulatory role of embryonic-stem-cell-derived multipotent MSCs (M-MSCs) administered in a CU mouse model. Therapeutic effects of M-MSC administration were assessed in a Trimellitic anhydride-induced contact urticaria model, revealing significant inhibition of urticarial reactions, including ear swelling, itchiness, and skin lesion. Moreover, M-MSC administration exerted control over effector T cell activities in major lymphoid and peripheral tissues, while also suppressing mast cell degranulation in peripheral tissues. Notably, the inhibitory effects mediated by M-MSCs were found to be TGF-ß-dependent. Our study demonstrates the capacity of M-MSCs to regulate contact urticaria in a murine model, harmonizing the activation of inflammatory T cells and mast cells. Additionally, we suggest that TGF-ß derived from M-MSCs could play a pivotal role as an inhibitory mechanism in contact urticaria.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Urticaria , Animales , Ratones , Linfocitos T , Mastocitos , Urticaria/inducido químicamente , Urticaria/terapia , Factor de Crecimiento Transformador beta
2.
Stem Cells Transl Med ; 11(10): 1010-1020, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36069837

RESUMEN

There are still no definite treatment modalities for interstitial cystitis (IC). Meanwhile, stem cell therapy is rising as potential alternative for various chronic diseases. This study aimed to investigate the safety of the clinical-grade mesenchymal stem cells (MSCs) derived from human embryonic stem cells (hESCs), code name MR-MC-01 (SNU42-MMSCs), in IC patients. Three female IC patients with (1) symptom duration >6 months, (2) visual pain analog scale (VAS) ≥4, and (3) one or two Hunner lesions <2 cm in-office cystoscopy within 1 month were included. Under general anesthesia, participants received cystoscopic submucosal injection of SNU42-MMSCs (2.0 × 107/5 mL) at the center or margin of Hunner lesions and other parts of the bladder wall except trigone with each injection volume of 1 mL. Follow-up was 1, 3, 6, 9, and 12 months postoperatively. Patients underwent scheduled follow-ups, and symptoms were evaluated with validated questionnaires at each visit. No SNU42-MMSCs-related adverse events including immune reaction and abnormalities on laboratory tests and image examinations were reported up to 12-month follow-up. VAS pain was temporarily improved in all subjects. No de novo Hunner lesions were observed and one lesion of the first subject was not identifiable on 12-month cystoscopy. This study reports the first clinical application of transurethral hESC-derived MSC injection in three patients with IC. hESC-based therapeutics was safe and proved to have potential therapeutic efficacy in IC patients. Stem cell therapy could be a potential therapeutic option for treating IC.


Asunto(s)
Cistitis Intersticial , Células Madre Embrionarias Humanas , Células Madre Mesenquimatosas , Humanos , Femenino , Cistitis Intersticial/terapia , Cistitis Intersticial/diagnóstico , Cistitis Intersticial/patología , Células Madre Embrionarias Humanas/patología , Vejiga Urinaria , Dolor , Células Madre Mesenquimatosas/patología
3.
Biomedicines ; 10(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35884853

RESUMEN

BACKGROUND: Rotator cuff tears (RCTs) induce chronic muscle weakness and shoulder pain. Treatment of RCT using surgery or drugs causes lipid infiltration and fibrosis, which hampers tissue regeneration and complete recovery. The pluripotent stem cell-derived multipotent mesenchymal stem cells (M-MSCs) represent potential candidate next-generation therapies for RCT. METHODS: The difference between M-MSCs and adult-MSCs was compared and analyzed using next-generation sequencing (NGS). In addition, using a rat model of RCT, the muscle recovery ability of M-MSCs and adult-MSCs was evaluated by conducting a histological analysis and monitoring the cytokine expression level. RESULTS: Using NGS, it was confirmed that M-MSC was suitable for transplantation because of its excellent ability to regulate inflammation that promotes tissue repair and reduced apoptosis and rejection during transplantation. In addition, while M-MSCs persisted for up to 8 weeks in vivo, they significantly reduced inflammation and adipogenesis-related cytokine levels in rat muscle. Significant differences were also confirmed in histopathological remission. CONCLUSIONS: M-MSCs remain in the body longer to modulate immune responses in RCTs and have a greater potential to improve muscle recovery by alleviating acute inflammatory responses. This indicates that M-MSCs could be used in potential next-generation RCT therapies.

4.
Sci Adv ; 8(9): eabm5559, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245116

RESUMEN

Human induced pluripotent stem cells (hiPSCs) were differentiated into a specific mesoderm subset characterized by KDR+CD56+APLNR+ (KNA+) expression. KNA+ cells had high clonal proliferative potential and specification into endothelial colony-forming cell (ECFCs) phenotype. KNA+ cells differentiated into perfused blood vessels when implanted subcutaneously into the flank of nonobese diabetic/severe combined immunodeficient mice and when injected into the vitreous of type 2 diabetic mice (db/db mice). Transcriptomic analysis showed that differentiation of hiPSCs derived from diabetics into KNA+ cells was sufficient to change baseline differences in gene expression caused by the diabetic status and reprogram diabetic cells to a pattern similar to KNA+ cells derived from nondiabetic hiPSCs. Proteomic array studies performed on retinas of db/db mice injected with either control or diabetic donor-derived KNA+ cells showed correction of aberrant signaling in db/db retinas toward normal healthy retina. These data provide "proof of principle" that KNA+ cells restore perfusion and correct vascular dysfunction in db/db mice.

5.
Biomedicines ; 10(2)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35203655

RESUMEN

Patients with vascular dementia, caused by cerebral ischemia, experience long-term cognitive impairment due to the lack of effective treatment. The mechanisms of and treatments for vascular dementia have been investigated in various animal models; however, the insufficient information on gene expression changes that define pathological conditions hampers progress. To investigate the underlying mechanism of and facilitate treatment development for vascular dementia, we established a mouse model of chronic cerebral hypoperfusion, including bilateral carotid artery stenosis, by using microcoils, and elucidated the molecular pathway underlying vascular dementia development. Rho-associated protein kinase (ROCK) 1/2, which regulates cellular structure, and inflammatory cytokines (IL-1 and IL-6) were upregulated in the vascular dementia model. However, expression of claudin-5, which maintains the blood-brain barrier, and MAP2 as a nerve cell-specific factor, was decreased in the hippocampal region of the vascular dementia model. Thus, we revealed that ROCK pathway activation loosens the tight junction of the blood-brain barrier and increases the influx of inflammatory cytokines into the hippocampal region, leading to neuronal death and causing cognitive and emotional dysfunction. Our vascular dementia model allows effective study of the vascular dementia mechanism. Moreover, the ROCK pathway may be a target for vascular dementia treatment development in the future.

6.
Biomaterials ; 280: 121277, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861510

RESUMEN

Mesenchymal stem cell (MSC) therapy is a promising treatment for various intractable disorders including interstitial cystitis/bladder pain syndrome (IC/BPS). However, an analysis of fundamental characteristics driving in vivo behaviors of transplanted cells has not been performed, causing debates about rational use and efficacy of MSC therapy. Here, we implemented two-photon intravital imaging and single cell transcriptome analysis to evaluate the in vivo behaviors of engrafted multipotent MSCs (M-MSCs) derived from human embryonic stem cells (hESCs) in an acute IC/BPS animal model. Two-photon imaging analysis was performed to visualize the dynamic association between engrafted M-MSCs and bladder vasculature within live animals until 28 days after transplantation, demonstrating the progressive integration of transplanted M-MSCs into a perivascular-like structure. Single cell transcriptome analysis was performed in highly purified engrafted cells after a dual MACS-FACS sorting procedure and revealed expression changes in various pathways relating to pericyte cell adhesion and cellular stress. Particularly, FOS and cyclin dependent kinase-1 (CDK1) played a key role in modulating the migration, engraftment, and anti-inflammatory functions of M-MSCs, which determined their in vivo therapeutic potency. Collectively, this approach provides an overview of engrafted M-MSC behavior in vivo, which will advance our understanding of MSC therapeutic applications, efficacy, and safety.


Asunto(s)
Cistitis Intersticial , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Cistitis Intersticial/terapia , Modelos Animales de Enfermedad , Microscopía Intravital , Trasplante de Células Madre Mesenquimatosas/métodos , Transcriptoma
7.
Stem Cell Res Ther ; 12(1): 539, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635172

RESUMEN

Allergic diseases are immune-mediated diseases. Allergies share a common immunopathogenesis, with specific differences according to the specific disease. Mesenchymal stem/stromal cells (MSCs) have been applied to people suffering from allergic and many other diseases. In this review, the immunologic roles of MSCs are systemically reviewed according to disease immunopathogenesis from a clinical viewpoint. MSCs seem to be a promising therapeutic modality not only as symptomatic treatments but also as causative and even preventive treatments for allergic diseases, including atopic dermatitis and chronic urticaria.


Asunto(s)
Urticaria Crónica , Dermatitis Atópica , Hipersensibilidad , Células Madre Mesenquimatosas , Dermatitis Atópica/terapia , Humanos
8.
Stem Cell Rev Rep ; 17(6): 2139-2152, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34189670

RESUMEN

BACKGROUND: The therapeutic effects of human embryonic stem cell-derived multipotent mesenchymal stem cells (M-MSCs) were evaluated for detrusor underactivity (DUA) in a rat model with atherosclerosis-induced chronic bladder ischemia (CBI) and associated mechanisms. METHODS: Sixteen-week-old male Sprague-Dawley rats were divided into five groups (n = 10). The DUA groups underwent 30 bilateral repetitions of endothelial injury to the iliac arteries to induce CBI, while the sham control group underwent a sham operation. All rats used in this study received a 1.25% cholesterol diet for 8 weeks. M-MSCs at a density of 2.5, 5.0, or 10.0 × 105 cells (250 K, 500 K, or 1000 K; K = a thousand) were injected directly into the bladder 7 weeks post-injury, while the sham and DUA group were treated only with vehicle (phosphate buffer solution). One week after M-MSC injection, awake cystometry was performed on the rats. Then, the bladders were harvested, studied in an organ bath, and prepared for histological and gene expression analyses. RESULTS: CBI by iliac artery injury reproduced voiding defects characteristic of DUA with decreased micturition pressure, increased micturition interval, and a larger residual volume. The pathological DUA properties were improved by M-MSC treatment in a dose-dependent manner, with the 1000 K group producing the best efficacy. Histological analysis revealed that M-MSC therapy reduced CBI-induced injuries including bladder fibrosis, muscular loss, and apoptosis. Transplanted M-MSCs mainly engrafted as vimentin and NG2 positive pericytes rather than myocytes, leading to increased angiogenesis in the CBI bladder. Transcriptomes of the CBI-injured bladders were characterized by the complement system, inflammatory, and ion transport-related pathways, which were restored by M-MSC therapy. CONCLUSIONS: Single injection of M-MSCs directly into the bladder of a CBI-induced DUA rat model improved voiding profiles and repaired the bladder muscle atrophy in a dose-dependent manner.


Asunto(s)
Células Madre Embrionarias Humanas , Células Madre Mesenquimatosas , Vejiga Urinaria de Baja Actividad , Animales , Modelos Animales de Enfermedad , Células Madre Embrionarias Humanas/patología , Humanos , Isquemia/patología , Isquemia/terapia , Masculino , Ratas , Ratas Sprague-Dawley , Vejiga Urinaria/patología , Vejiga Urinaria de Baja Actividad/patología
9.
J Clin Med ; 9(9)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899334

RESUMEN

Mesenchymal stem/stromal cell (MSC) therapy is a promising approach for treatment of as yet incurable detrusor underactivity (DUA), which is characterized by decreased detrusor contraction strength and/or duration, leading to prolonged bladder emptying. In the present study, we demonstrated the therapeutic potential of human embryonic stem cell (ESC)-derived multipotent MSCs (M-MSCs) in a diabetic rat model of DUA. Diabetes mellitus (DM) was induced by intraperitoneal injection of streptozotocin (STZ) (50 mg/kg) into 8-week-old female Sprague-Dawley rats. Three weeks later, various doses of M-MSCs (0.25, 0.5, and 1 × 106 cells) or an equivalent volume of PBS were injected into the outer layer of the bladder. Awake cystometry, organ bath, histological, and gene expression analyses were evaluated 1 week (short-term) or 2 and 4 weeks (long-term) after M-MSC transplantation. STZ-induced diabetic rats developed DUA, including phenotypes with significantly longer micturition intervals, increased residual urine amounts and bladder capacity, decreased micturition pressure on awake cystometry, and contractile responses to various stimuli in organ bath studies. Muscle degeneration, mast cell infiltration, fibrosis, and apoptosis were present in the bladders of DM animals. A single local transplantation of M-MSCs ameliorated DUA bladder pathology, including functional changes and histological evaluation, and caused few adverse outcomes. Immunostaining and gene expression analysis revealed that the transplanted M-MSCs supported myogenic restoration primarily by engrafting into bladder tissue via pericytes, and subsequently exerting paracrine effects to prevent apoptotic cell death in bladder tissue. The therapeutic efficacy of M-MSCs was superior to that of human umbilical cord-derived MSCs at the early time point (1 week). However, the difference in efficacy between M-MSCs and human umbilical cord-derived MSCs was statistically insignificant at the later time points (2 and 4 weeks). Collectively, the present study provides the first evidence for improved therapeutic efficacy of a human ESC derivative in a preclinical model of DM-associated DUA.

10.
Sci Adv ; 6(16): eaba1334, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32490200

RESUMEN

Glutathione (GSH), the most abundant nonprotein thiol functioning as an antioxidant, plays critical roles in maintaining the core functions of mesenchymal stem cells (MSCs), which are used as a cellular immunotherapy for graft-versus-host disease (GVHD). However, the role of GSH dynamics in MSCs remains elusive. Genome-wide gene expression profiling and high-throughput live-cell imaging assays revealed that CREB1 enforced the GSH-recovering capacity (GRC) of MSCs through NRF2 by directly up-regulating NRF2 target genes responsible for GSH synthesis and redox cycling. MSCs with enhanced GSH levels and GRC mediated by CREB1-NRF2 have improved self-renewal, migratory, anti-inflammatory, and T cell suppression capacities. Administration of MSCs overexpressing CREB1-NRF2 target genes alleviated GVHD in a humanized mouse model, resulting in improved survival, decreased weight loss, and reduced histopathologic damages in GVHD target organs. Collectively, these findings demonstrate the molecular and functional importance of the CREB1-NRF2 pathway in maintaining MSC GSH dynamics, determining therapeutic outcomes for GVHD treatment.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Glutatión/metabolismo , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo
11.
PLoS One ; 15(5): e0232899, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32392240

RESUMEN

Various nanopatterning techniques have been developed to improve cell proliferation and differentiation efficiency. As we previously reported, nanopillars and pores are able to sustain human pluripotent stem cells and differentiate pancreatic cells. From this, the nanoscale patterns would be effective environment for the co-culturing of epithelial and mesenchymal cell types. Interestingly, the nanopatterning selectively reduced the proliferative rate of mesenchymal cells while increasing the expression of adhesion protein in epithelial type cells. Additionally, co-cultured cells on the nanopatterning were not negatively affected in terms of cell function metabolic ability or cell survival. This is in contrast to conventional co-culturing methods such as ultraviolet or chemical treatments. The nanopatterning appears to be an effective environment for mesenchymal co-cultures with typically low proliferative rates cells such as astrocytes, neurons, melanocytes, and fibroblasts without using potentially damaging treatments.


Asunto(s)
Técnicas de Cocultivo/instrumentación , Células Epiteliales , Células Madre Mesenquimatosas , Nanoestructuras , Animales , Adhesión Celular , Proliferación Celular , Supervivencia Celular , Células Epiteliales/citología , Células Epiteliales/fisiología , Fibroblastos/citología , Fibroblastos/fisiología , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Ratones , Propiedades de Superficie
12.
Int J Stem Cells ; 13(2): 287-294, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32323512

RESUMEN

Cell labeling technologies are required to monitor the fate of transplanted cells in vivo and to select target cells for the observation of certain changes in vitro. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been transplanted for the treatment of heart injuries or used in vitro for preclinical cardiac safety assessments. Cardiomyocyte (CM) labeling has been used in these processes to facilitate target cell monitoring. However, the functional effect of the labeling agent on hiPSC-CMs has not been studied. Therefore, we investigated the effects of labeling agents on CM cellular functions. 3'-Dioctadecyloxacarbocyanine perchlorate (DiO), quantum dots (QDs), and a DNA plasmid expressing EGFP using Lipo2K were used to label hiPSC-CMs. We conclude that the hiPSC-CM labeling with DiO and QDs does not induce arrhythmogenic effects but rather improves the mRNA expression of cardiac ion channels and Ca2+ influx by L-type Ca2+ channels. Thus, DiO and QD labeling agents may be useful tools to monitor transplanted CMs, and further in vivo influences of the labeling agents should be investigated in the future.

13.
BMB Rep ; 53(8): 437-441, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32336319

RESUMEN

In accordance with requirements of the ICH S7B safety pharmacology guidelines, numerous next-generation cardiotoxicity studies using human stem cell-derived cardiomyocytes (CMs) are being conducted globally. Although several stem cell-derived CMs are being developed for commercialization, there is insufficient research to verify if these CMs can replace animal experiments. In this study, in vitro high-efficiency CMs derived from human embryonic stem cells (hESC-CMs) were compared with Sprague-Dawley rats as in vivo experimental animals, and primary cultured in vitro rat-CMs for cardiotoxicity tests. In vivo rats were administrated with two consecutive injections of 100 mg/kg isoproterenol, 15 mg/kg doxorubicin, or 100 mg/kg nifedipine, while in vitro rat-CMs and hESC-CMs were treated with 5 µM isoproterenol, 5 µM doxorubicin, and 50 µM nifedipine. We have verified the equivalence of hESC-CMs assessments over various molecular biological markers, morphological analysis. Also, we have identified the advantages of hESC-CMs, which can distinguish between species variability, over electrophysiological analysis of ion channels against cardiac damage. Our findings demonstrate the possibility and advantage of high-efficiency hESC-CMs as next-generation cardiotoxicity assessment. [BMB Reports 2020; 53(8): 437-441].


Asunto(s)
Cardiotoxicidad/metabolismo , Células Madre Embrionarias/metabolismo , Miocitos Cardíacos/fisiología , Animales , Cardiotoxicidad/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Doxorrubicina/farmacología , Doxorrubicina/toxicidad , Humanos , Células Madre Pluripotentes Inducidas , Isoproterenol/farmacología , Isoproterenol/toxicidad , Masculino , Nifedipino/farmacología , Nifedipino/toxicidad , Ratas , Ratas Sprague-Dawley
14.
Redox Biol ; 30: 101437, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31981893

RESUMEN

Pre-implantation mouse blastocyst-derived stem cells, namely embryonic stem cells (ESCs), trophoblast stem cells (TSCs), and extraembryonic endoderm (XEN) cells, have their own characteristics and lineage specificity. So far, several studies have attempted to identify these three stem cell types based on genetic markers, morphologies, and factors involved in maintaining cell self-renewal. In this study, we focused on characterizing the three stem cell types derived from mouse blastocysts by observing cellular organelles, especially the mitochondria, and analyzing how mitochondrial dynamics relates to the energy metabolism in each cell type. Our study revealed that XEN cells have distinct mitochondrial morphology and energy metabolism compared with that in ESCs and TSCs. In addition, by analyzing the energy metabolism (oxygen consumption and extracellular acidification rates), we demonstrated that differences in the mitochondria affect the cellular metabolism in the stem cells. RNA sequencing analysis showed that although ESCs are developmentally closer to XEN cells in origin, their gene expression pattern is relatively closer to that of TSCs. Notably, mitochondria-, mitochondrial metabolism-, transport/secretory action-associated genes were differentially expressed in XEN cells compared with that in ESCs and TSCs, and this feature corresponds with the morphology of the cells.


Asunto(s)
Blastocisto/citología , Células Madre Embrionarias/citología , Endodermo/citología , Redes Reguladoras de Genes , Mitocondrias/metabolismo , Trofoblastos/citología , Animales , Blastocisto/metabolismo , Células Cultivadas , Células Madre Embrionarias/metabolismo , Endodermo/metabolismo , Metabolismo Energético , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones , Mitocondrias/genética , Dinámicas Mitocondriales , Análisis de Secuencia de ARN , Trofoblastos/metabolismo
15.
Antioxid Redox Signal ; 32(1): 35-59, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31656084

RESUMEN

Aims: The naive or primitive states of stem cells (SCs) residing in specific niches are unstable and difficult to preserve in vitro. Vitamin C (VitC), in addition to suppressing oxygen radicals, exerts pleiotropic effects to preserve the core functions of SCs. However, this compound is labile and readily oxidized, resulting in cellular toxicity and preventing its reliable application in this context. We found that a VitC derivative, ascorbic acid 2-glucoside (AA2G), stably maintains the naive pluripotency of murine embryonic SCs (mESCs) and the primitiveness of human mesenchymal SCs (hMSCs) without cellular toxicity. Results: The beneficial effects of AA2G and related molecular mechanisms were evaluated in mESCs, induced pluripotent-SCs (iPSCs), and hMSCs. AA2G was stable in aqueous solution and barely induced cellular toxicity in cultured SCs, unlike VitC. AA2G supplementation recapitulated the well-known effects of VitC, including induction of ten-eleven translocation-dependent DNA demethylation in mESCs and suppression of p53 during generation of murine iPSCs. Furthermore, supplementation of hMSCs with AA2G improved therapeutic outcomes in an asthma mouse model by promoting their self-renewal, engraftment, and anti-inflammatory properties. Particularly, activation of the cAMP-responsive element-binding protein-1 (CREB1) pathway contributed to the ability of AA2G to maintain naive pluripotency of mESCs and functionality of hMSCs. Innovation and Conclusion: Given its long-lasting effects and low cellular toxicity, AA2G supplementation is useful to support the naive pluripotency of mESCs and the primitiveness of hMSCs, affecting their developmental potency and therapeutic efficacy. Furthermore, we demonstrate the significance of the CREB1 pathway in the mechanism of action of AA2G.


Asunto(s)
Ácido Ascórbico/análogos & derivados , Asma/terapia , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Madre Embrionarias/citología , Células Madre Mesenquimatosas/citología , Animales , Ácido Ascórbico/farmacología , Asma/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Humanos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Nicho de Células Madre
16.
Microvasc Res ; 126: 103912, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31433972

RESUMEN

Critical limb ischemia is one of the most common types of peripheral arterial disease. Preclinical development of ischemia therapeutics relies on the availability of a relevant and reproducible in vivo disease model. Thus, establishing appropriate animal disease models is essential for the development of new therapeutic strategies. Currently, the most commonly employed model of hindlimb ischemia is the surgical induction method with ligation of the femoral artery and its branches after skin incision. However, the efficiency of the method is highly variable depending on the availability of skilled technicians. In addition, after surgical procedures, animals can quickly and spontaneously recover from damage, limiting observations of the therapeutic effect of potential agents. The aim of this study was to develop a hindlimb ischemia mouse model with similarities to human ischemic disease. To that end, a photochemical reaction was used to induce thrombosis in the hindlimb. After the photochemical reaction was induced by light irradiation, thrombotic plugs and adjacent red blood cell stasis were observed in hindlimb vessels in the light-irradiated zone. Additionally, the photochemically induced thrombosis maintained the ischemic condition and did not cause notable side effects in mice.


Asunto(s)
Eritrosina , Isquemia/fisiopatología , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Trombosis/fisiopatología , Animales , Velocidad del Flujo Sanguíneo , Modelos Animales de Enfermedad , Miembro Posterior , Isquemia/inducido químicamente , Luz , Masculino , Ratones Endogámicos ICR , Procesos Fotoquímicos , Flujo Sanguíneo Regional , Trombosis/inducido químicamente , Factores de Tiempo
17.
Mater Sci Eng C Mater Biol Appl ; 103: 109729, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31349510

RESUMEN

Graphene and its derivatives have seen a rapid rise in interest as promising biomaterials especially in the field of tissue engineering, regenerative medicine, and cell biology of late. Despite its proven potential in numerous biological applications, information regarding the relationship between the different forms of graphene and cell lineages is still lacking partly due to its topical emergence in cellular studies. Herein, we explore the biocompatibility of four types of graphene substrates (chemical vapor deposition grown graphene, mechanically exfoliated graphene, chemically exfoliated graphene oxide, and reduced graphene oxide) with three types of somatic cells (keratinocytes, hepatocytes, endothelial cells) derived from the three germ layers in relation to cell adhesion, proliferation, morphology, and gene expression. The results revealed exceptional cell adhesion for all tested groups but enhanced proliferation and cytoskeletal interconnectivity in graphene oxide and reduced graphene oxide substrates. We were unable to detect any adverse effects in gene expression and survivability during a week of culture. We further show topographic changes to graphene substrates under fetal bovine serum adsorption to better illustrate the actual microenvironment of inhabitant cells. This study highlights the extraordinary synergy between graphene and somatic cells, suggesting the discretionary use of extracellular matrix components for in vitro cultivation.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Grafito , Hepatocitos , Células Endoteliales de la Vena Umbilical Humana , Queratinocitos , Grafito/química , Grafito/farmacología , Hepatocitos/citología , Hepatocitos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo
18.
Nat Commun ; 10(1): 3123, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31311935

RESUMEN

Since both myocardium and vasculature in the heart are excessively damaged following myocardial infarction (MI), therapeutic strategies for treating MI hearts should concurrently target both so as to achieve true cardiac repair. Here we demonstrate a concomitant method that exploits the advantages of cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) and human mesenchymal stem cell-loaded patch (hMSC-PA) to amplify cardiac repair in a rat MI model. Epicardially implanted hMSC-PA provide a complimentary microenvironment which enhances vascular regeneration through prolonged secretion of paracrine factors, but more importantly it significantly improves the retention and engraftment of intramyocardially injected hiPSC-CMs which ultimately restore the cardiac function. Notably, the majority of injected hiPSC-CMs display adult CMs like morphology suggesting that the secretomic milieu of hMSC-PA constitutes pleiotropic effects in vivo. We provide compelling evidence that this dual approach can be a promising means to enhance cardiac repair on MI hearts.


Asunto(s)
Corazón/fisiología , Trasplante de Células Madre Mesenquimatosas/métodos , Infarto del Miocardio/terapia , Miocitos Cardíacos/trasplante , Regeneración , Animales , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Inyecciones Intralesiones , Masculino , Infarto del Miocardio/etiología , Infarto del Miocardio/patología , Miocardio/citología , Miocardio/patología , Miocitos Cardíacos/fisiología , Ratas , Ratas Endogámicas F344 , Resultado del Tratamiento
19.
Stem Cells ; 37(5): 623-630, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30721559

RESUMEN

The derivation of human embryonic stem cells (hESCs) by somatic cell nuclear transfer (SCNT) has prompted a re-emerging interest in using such cells for therapeutic cloning. Despite recent advancements in derivation protocols, the functional potential of CHA-NT4 derived cells is yet to be elucidated. For this reason, this study sought to differentiate CHA-NT4 cells toward an endothelial lineage in order to evaluate in vitro and in vivo functionality. To initial differentiation, embryoid body formation of CHA-NT4 was mediated by concave microwell system which was optimized for hESC-endothelial cell (EC) differentiation. The isolated CD31+ cells exhibited hallmark endothelial characteristics in terms of morphology, tubule formation, and ac-LDL uptake. Furthermore, CHA-NT4-derived EC (human nuclear transfer [hNT]-ESC-EC) transplantation in hind limb ischemic mice rescued the hind limb and restored blood perfusion. These findings suggest that hNT-ESC-EC are functionally equivalent to hESC-ECs, warranting further study of CHA-NT4 derivatives in comparison to other well established pluripotent stem cell lines. This revival of human SCNT-ESC research may lead to interesting insights into cellular behavior in relation to donor profile, mitochondrial DNA, and oocyte quality. Stem Cells 2019;37:623-630.


Asunto(s)
Diferenciación Celular/genética , Células Endoteliales/trasplante , Células Madre Embrionarias Humanas/trasplante , Células Madre Pluripotentes Inducidas/trasplante , Animales , Miembro Posterior/patología , Miembro Posterior/trasplante , Humanos , Isquemia/terapia , Ratones , Técnicas de Transferencia Nuclear
20.
Mol Biol Cell ; 30(5): 542-553, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30650008

RESUMEN

Hexokinase 2 (HK2) catalyzes the first step of glycolysis and is up-regulated in cancer cells. The mechanism has not been fully elucidated. Tristetraprolin (TTP) is an AU-rich element (ARE)-binding protein that inhibits the expression of ARE-containing genes by enhancing mRNA degradation. TTP expression is down-regulated in cancer cells. We demonstrated that TTP is critical for down-regulation of HK2 expression in cancer cells. HK2 mRNA contains an ARE within its 3'-UTR. TTP binds to HK2 3'-UTR and enhances degradation of HK2 mRNA. TTP overexpression decreased HK2 expression and suppressed the glycolytic capacity of cancer cells, measured as glucose uptake and production of glucose-6-phosphate, pyruvate, and lactate. TTP overexpression reduced both the extracellular acidification rate (ECAR) and the oxygen consumption rate (OCR) of cancer cells. Ectopic expression of HK2 in cancer cells attenuated the reduction in glycolytic capacity, ECAR, and OCR from TTP. Taken together, these findings suggest that TTP acts as a negative regulator of HK2 expression and glucose metabolism in cancer cells.


Asunto(s)
Glucólisis , Hexoquinasa/metabolismo , Neoplasias/metabolismo , Tristetraprolina/metabolismo , Regiones no Traducidas 3'/genética , Elementos Ricos en Adenilato y Uridilato/genética , Ácidos/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Proliferación Celular , Hexoquinasa/genética , Humanos , Luciferasas/metabolismo , Consumo de Oxígeno , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA