Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(4): 1159-1166, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36749022

RESUMEN

Spin-torque nano-oscillators (STNOs) are a type of nanoscale microwave auto-oscillators utilizing spin-torque to generate magnetodynamics with great promise for applications in microwaves, magnetic memory, and neuromorphic computing. Here, we report the first demonstration of exchange-spring STNOs, with an exchange-spring ([Co/Pd]-Co) reference layer and a perpendicular ([Co/Ni]) free layer. This magnetic configuration results in high-frequency (>10 GHz) microwave emission at a zero magnetic field and exchange-spring dynamics in the reference layer and the observation of magnetic droplet solitons in the free layer at different current polarities. Our demonstration of bipolar and field-free exchange-spring-based STNOs operating over a 20 GHz frequency range greatly extends the design freedom and functionality of the current STNO technology for energy-efficient high-frequency spintronic and neuromorphic applications.

2.
Nat Commun ; 13(1): 2462, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513369

RESUMEN

Magnetic droplets are non-topological magnetodynamical solitons displaying a wide range of complex dynamic phenomena with potential for microwave signal generation. Bubbles, on the other hand, are internally static cylindrical magnetic domains, stabilized by external fields and magnetostatic interactions. In its original theory, the droplet was described as an imminently collapsing bubble stabilized by spin transfer torque and, in its zero-frequency limit, as equivalent to a bubble. Without nanoscale lateral confinement, pinning, or an external applied field, such a nanobubble is unstable, and should collapse. Here, we show that we can freeze dynamic droplets into static nanobubbles by decreasing the magnetic field. While the bubble has virtually the same resistance as the droplet, all signs of low-frequency microwave noise disappear. The transition is fully reversible and the bubble can be thawed back into a droplet if the magnetic field is increased under current. Whereas the droplet collapses without a sustaining current, the bubble is highly stable and remains intact for days without external drive. Electrical measurements are complemented by direct observation using scanning transmission x-ray microscopy, which corroborates the analysis and confirms that the bubble is stabilized by pinning.

3.
Phys Rev Lett ; 120(21): 217204, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29883139

RESUMEN

Magnetic droplets are nontopological dynamical solitons that can be nucleated in nanocontact based spin torque nano-oscillators (STNOs) with perpendicular magnetic anisotropy free layers. While theory predicts that the droplet should be of the same size as the nanocontact, its inherent drift instability has thwarted attempts at observing it directly using microscopy techniques. Here, we demonstrate highly stable magnetic droplets in all-perpendicular STNOs and present the first detailed droplet images using scanning transmission X-ray microscopy. In contrast to theoretical predictions, we find that the droplet diameter is about twice as large as the nanocontact. By extending the original droplet theory to properly account for the lateral current spread underneath the nanocontact, we show that the large discrepancy primarily arises from current-in-plane Zhang-Li torque adding an outward pressure on the droplet perimeter. Electrical measurements on droplets nucleated using a reversed current in the antiparallel state corroborate this picture.

4.
Nanoscale ; 9(5): 1896-1900, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28094381

RESUMEN

Spin torque nano-oscillators (STNO) represent a unique class of nano-scale microwave signal generators and offer a combination of intriguing properties, such as nano sized footprint, ultrafast modulation rates, and highly tunable microwave frequencies from 100 MHz to close to 100 GHz. However, their low output power and relatively high threshold current still limit their applicability and must be improved. In this study, we investigate the influence of the bottom Cu electrode thickness (tCu) in nano-contact STNOs based on Co/Cu/NiFe GMR stacks and with nano-contact diameters ranging from 60 to 500 nm. Increasing tCu from 10 to 70 nm results in a 40% reduction of the threshold current, an order of magnitude higher microwave output power, and close to two orders of magnitude better power conversion efficiency. Numerical simulations of the current distribution suggest that these dramatic improvements originate from a strongly reduced lateral current spread in the magneto-dynamically active region.

6.
Nat Commun ; 7: 11209, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27088301

RESUMEN

Static and dynamic magnetic solitons play a critical role in applied nanomagnetism. Magnetic droplets, a type of non-topological dissipative soliton, can be nucleated and sustained in nanocontact spin-torque oscillators with perpendicular magnetic anisotropy free layers. Here, we perform a detailed experimental determination of the full droplet nucleation boundary in the current-field plane for a wide range of nanocontact sizes and demonstrate its excellent agreement with an analytical expression originating from a stability analysis. Our results reconcile recent contradicting reports of the field dependence of the droplet nucleation. Furthermore, our analytical model both highlights the relation between the fixed layer material and the droplet nucleation current magnitude, and provides an accurate method to experimentally determine the spin transfer torque asymmetry of each device.

7.
Phys Rev Lett ; 112(4): 047201, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24580485

RESUMEN

Magnetic dissipative droplets are localized, strongly nonlinear dynamical modes excited in nanocontact spin valves with perpendicular magnetic anisotropy. These modes find potential application in nanoscale structures for magnetic storage and computation, but dissipative droplet studies have so far been limited to extended thin films. Here, numerical and asymptotic analyses are used to demonstrate the existence and properties of novel solitons in confined structures. As a nanowire's width is decreased with a nanocontact of fixed size at its center, the observed modes undergo transitions from a fully localized two-dimensional droplet into a two-dimensional droplet edge mode and then a pulsating one-dimensional droplet. These solitons are interpreted as dissipative versions of classical, conservative solitons, allowing for an analytical description of the modes and the mechanisms of bifurcation. The presented results open up new possibilities for the study of low-dimensional solitons and droplet applications in nanostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...