Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Malar J ; 23(1): 180, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844987

RESUMEN

BACKGROUND: Disruptions in malaria control due to COVID-19 mitigation measures were predicted to increase malaria morbidity and mortality in Africa substantially. In Uganda, long-lasting insecticidal nets (LLINs) are distributed nationwide every 3-4 years, but the 2020-2021 campaign was altered because of COVID-19 restrictions so that the timing of delivery of new nets was different from the original plans made by the National Malaria Control Programme. METHODS: A transmission dynamics modelling exercise was conducted to explore how the altered delivery of LLINs in 2020-2021 impacted malaria burden in Uganda. Data were available on the planned LLIN distribution schedule for 2020-2021, and the actual delivery. The transmission model was used to simulate 100 health sub-districts, and parameterized to match understanding of local mosquito bionomics, net use estimates, and seasonal patterns based on data collected in 2017-2019 during a cluster-randomized trial (LLINEUP). Two scenarios were compared; simulated LLIN distributions matching the actual delivery schedule, and a comparable scenario simulating LLIN distributions as originally planned. Model parameters were otherwise matched between simulations. RESULTS: Approximately 70% of the study population received LLINs later than scheduled in 2020-2021, although some areas received LLINs earlier than planned. The model indicates that malaria incidence in 2020 was substantially higher in areas that received LLINs late. In some areas, early distribution of LLINs appeared less effective than the original distribution schedule, possibly due to attrition of LLINs prior to transmission peaks, and waning LLIN efficacy after distribution. On average, the model simulations predicted broadly similar overall mean malaria incidence in 2021 and 2022. After accounting for differences in cluster population size and LLIN distribution dates, no substantial increase in malaria burden was detected. CONCLUSIONS: The model results suggest that the disruptions in the 2020-2021 LLIN distribution campaign in Uganda did not substantially increase malaria burden in the study areas.


Asunto(s)
COVID-19 , Mosquiteros Tratados con Insecticida , Malaria , Control de Mosquitos , Uganda/epidemiología , Malaria/prevención & control , Malaria/epidemiología , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Humanos , Control de Mosquitos/estadística & datos numéricos , Control de Mosquitos/métodos , COVID-19/prevención & control , COVID-19/epidemiología
2.
Nat Commun ; 15(1): 3230, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649361

RESUMEN

Despite concern that climate change could increase the human risk to malaria in certain areas, the temperature dependency of malaria transmission is poorly characterized. Here, we use a mechanistic model fitted to experimental data to describe how Plasmodium falciparum infection of the African malaria vector, Anopheles gambiae, is modulated by temperature, including its influences on parasite establishment, conversion efficiency through parasite developmental stages, parasite development rate, and overall vector competence. We use these data, together with estimates of the survival of infected blood-fed mosquitoes, to explore the theoretical influence of temperature on transmission in four locations in Kenya, considering recent conditions and future climate change. Results provide insights into factors limiting transmission in cooler environments and indicate that increases in malaria transmission due to climate warming in areas like the Kenyan Highlands, might be less than previously predicted.


Asunto(s)
Anopheles , Malaria Falciparum , Mosquitos Vectores , Plasmodium falciparum , Temperatura , Plasmodium falciparum/fisiología , Malaria Falciparum/transmisión , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Animales , Anopheles/parasitología , Humanos , Kenia/epidemiología , Mosquitos Vectores/parasitología , Cambio Climático , Femenino
3.
Parasit Vectors ; 17(1): 181, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589957

RESUMEN

ABSTRACT: BACKGROUND: Anopheles mosquitoes are ectothermic and involved in numerous pathogen transmissions. Their life history traits are influenced by several environmental factors such as temperature, relative humidity and photoperiodicity. Despite extensive investigations of these environmental conditions on vector population ecology, their impact on the different life stages of Anopheles at different seasons in the year remains poorly explored. This study reports the potential impact of these abiotic factors on the immature and adult stages of Anopheles gambiae sensu lato during different seasons. METHODS: Environmental conditions were simulated in the laboratory using incubators to mimic the environmental conditions of two important periods of the year in Burkina Faso: the peak of rainy season (August) and the onset of dry season (December). Eggs from wild An. coluzzii and An. gambiae s.l. were reared separately under each environmental condition. For Anopheles coluzzii or An. gambiae s.l., eggs were equally divided into two groups assigned to the two experimental conditions. Four replicates were carried out for this experiment. Then, egg hatching rate, pupation rate, larval development time, larva-to-pupae development time, adult emergence dynamics and longevity of Anopheles were evaluated. Also, pupae-to-adult development time from wild L3 and L4 Anopheles larvae was estimated under semi-field conditions in December. RESULTS: A better egg hatching rate was recorded overall with conditions mimicking the onset of the dry season compared to the peak of the rainy season. Larval development time and longevity of An. gambiae s.l. female were significantly longer at the onset of the dry season compared than at the peak of the rainy season. Adult emergence was spread over 48 and 96 h at the peak of the rainy season and onset of dry season conditions respectively. This 96h duration in the controlled conditions of December was also observed in the semi-field conditions in December. CONCLUSIONS: The impact of temperature and relative humidity on immature stages and longevity of An. gambiae s.l. adult females differed under both conditions. These findings contribute to a better understanding of vector population dynamics throughout different seasons of the year and may facilitate tailoring of control strategies.


Asunto(s)
Anopheles , Femenino , Animales , Estaciones del Año , Burkina Faso/epidemiología , Mosquitos Vectores , Óvulo , Larva
4.
Malar J ; 22(1): 276, 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37716970

RESUMEN

BACKGROUND: Following the World Health Organization (WHO) endorsement of dual active ingredient (AI) nets, an increased uptake of pyrethroid-chlorfenapyr and pyrethroid-pyriproxyfen nets is expected. Studies evaluating their physical and insecticidal durability are essential for making programmatic and procurement decisions. This paper describes the methodology for a prospective study to evaluate the attrition, fabric integrity, insecticidal durability of Interceptor® G2 (alpha-cypermethrin-chlorfenapyr) and Royal Guard® (alpha-cypermethrin-pyriproxyfen), compared to Interceptor® (alpha-cypermethrin), embedded in a 3-arm cluster randomized controlled trial (cRCT) in the Zou Department of Benin. METHODS: Ten clusters randomly selected from each arm of the cRCT will be used for the study. A total of 750 ITNs per type will be followed in 5 study clusters per arm to assess ITN attrition and fabric integrity at 6-, 12-, 24- and 36-months post distribution, using standard WHO procedures. A second cohort of 1800 nets per type will be withdrawn every 6 months from all 10 clusters per arm and assessed for chemical content and biological activity in laboratory bioassays at each time point. Alpha-cypermethrin bioefficacy in Interceptor® and Royal Guard® will be monitored in WHO cone bioassays and tunnel tests using the susceptible Anopheles gambiae Kisumu strain. The bioefficacy of the non-pyrethroid insecticides (chlorfenapyr in Interceptor® G2 and pyriproxyfen in Royal Guard®) will be monitored using the pyrethroid-resistant Anopheles coluzzii Akron strain. Chlorfenapyr activity will be assessed in tunnel tests while pyriproxyfen activity will be assessed in cone bioassays in terms of the reduction in fertility of blood-fed survivors observed by dissecting mosquito ovaries. Nets withdrawn at 12, 24 and 36 months will be tested in experimental hut trials within the cRCT study area against wild free-flying pyrethroid resistant An. gambiae sensu lato to investigate their superiority to Interceptor® and to compare them to ITNs washed 20 times for experimental hut evaluation studies. Mechanistic models will also be used to investigate whether entomological outcomes with each dual ITN type in experimental hut trials can predict their epidemiological performance in the cRCT. CONCLUSION: This study will provide information on the durability of two dual AI nets (Interceptor® G2 and Royal Guard®) in Benin and will help identify suitable methods for monitoring the durability of their insecticidal activity under operational conditions. The modelling component will determine the capacity of experimental hut trials to predict the epidemiological performance of dual AI nets across their lifespan.


Asunto(s)
Anopheles , Insecticidas , Animales , Humanos , Insecticidas/farmacología , Estudios Prospectivos , Benin
5.
Science ; 381(6657): 533-540, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37535741

RESUMEN

Malaria control demands the development of a wide range of complementary strategies. We describe the properties of a naturally occurring, non-genetically modified symbiotic bacterium, Delftia tsuruhatensis TC1, which was isolated from mosquitoes incapable of sustaining the development of Plasmodium falciparum parasites. D. tsuruhatensis TC1 inhibits early stages of Plasmodium development and subsequent transmission by the Anopheles mosquito through secretion of a small-molecule inhibitor. We have identified this inhibitor to be the hydrophobic molecule harmane. We also found that, on mosquito contact, harmane penetrates the cuticle, inhibiting Plasmodium development. D. tsuruhatensis TC1 stably populates the mosquito gut, does not impose a fitness cost on the mosquito, and inhibits Plasmodium development for the mosquito's life. Contained field studies in Burkina Faso and modeling showed that D. tsuruhatensis TC1 has the potential to complement mosquito-targeted malaria transmission control.


Asunto(s)
Anopheles , Delftia , Interacciones Huésped-Parásitos , Malaria Falciparum , Plasmodium falciparum , Animales , Anopheles/microbiología , Malaria Falciparum/microbiología , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Plasmodium falciparum/microbiología , Plasmodium falciparum/fisiología , Delftia/fisiología , Simbiosis , Humanos
6.
Artículo en Inglés | MEDLINE | ID: mdl-37456558

RESUMEN

Insecticide resistance is a growing problem that risks harming the progress made by vector control tools in reducing the malaria burden globally. New methods for quantifying the extent of resistance in wild populations are urgently needed to guide deployment of interventions to improve disease control. Intensity bioassays measure mosquito mortality at a range of insecticide doses and characterise phenotypic resistance in regions where resistance is already detected. These data are increasingly being collected but tend to exhibit high measurement error and there is a lack of formal guidelines on how they should be analysed or compared. This paper introduces a novel Bayesian framework for analysing intensity bioassay data, which uses a flexible statistical model able to capture a wide variety of relationships between mortality and insecticide dose. By accounting for background mortality of mosquitoes, our approach minimises the impact of this source of measurement noise resulting in more precise quantification of resistance. It outputs a range of metrics for describing the intensity and variability in resistance within the sample and quantifies the level of measurement error in the assay. The functionality is illustrated with data from laboratory-reared mosquitoes to show how the lethal dose varies within and between different strains. The framework can also be used to formally test hypotheses by explicitly considering the high heterogeneity seen in these types of data in field samples. Here we show that the intensity of resistance (as measured by the median lethal dose (LC50) of insecticide) increases over 7 years in mosquitoes from one village in Burkina Faso but remains constant in another. This work showcases the benefits of statistically rigorous analysis of insecticide bioassay data and highlights the additional information available from this and other dose-response data.

7.
J Infect Dis ; 228(2): 212-223, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37042518

RESUMEN

Transmission-blocking interventions can play an important role in combating malaria worldwide. Recently, a highly potent Plasmodium falciparum transmission-blocking monoclonal antibody (TB31F) was demonstrated to be safe and efficacious in malaria-naive volunteers. Here we predict the potential public health impact of large-scale implementation of TB31F alongside existing interventions. We developed a pharmaco-epidemiological model, tailored to 2 settings of differing transmission intensity with already established insecticide-treated nets and seasonal malaria chemoprevention interventions. Community-wide annual administration (at 80% coverage) of TB31F over a 3-year period was predicted to reduce clinical incidence by 54% (381 cases averted per 1000 people per year) in a high-transmission seasonal setting, and 74% (157 cases averted per 1000 people per year) in a low-transmission seasonal setting. Targeting school-aged children gave the largest reduction in terms of cases averted per dose. An annual administration of the transmission-blocking monoclonal antibody TB31F may be an effective intervention against malaria in seasonal malaria settings.


Asunto(s)
Malaria Falciparum , Malaria , Niño , Humanos , Plasmodium falciparum , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaria Falciparum/tratamiento farmacológico , Estaciones del Año , Malaria/prevención & control , Anticuerpos Monoclonales/uso terapéutico
8.
Artículo en Inglés | MEDLINE | ID: mdl-36895438

RESUMEN

Experimental hut trials (EHTs) are used to evaluate indoor vector control interventions against malaria vectors in a controlled setting. The level of variability present in the assay will influence whether a given study is well powered to answer the research question being considered. We utilised disaggregated data from 15 previous EHTs to gain insight into the behaviour typically observed. Using simulations from generalised linear mixed models to obtain power estimates for EHTs, we show how factors such as the number of mosquitoes entering the huts each night and the magnitude of included random effects can influence study power. A wide variation in behaviour is observed in both the mean number of mosquitoes collected per hut per night (ranging from 1.6 to 32.5) and overdispersion in mosquito mortality. This variability in mortality is substantially greater than would be expected by chance and should be included in all statistical analyses to prevent false precision of results. We utilise both superiority and non-inferiority trials to illustrate our methodology, using mosquito mortality as the outcome of interest. The framework allows the measurement error of the assay to be reliably assessed and enables the identification of outlier results which could warrant further investigation. EHTs are increasingly playing an important role in the evaluation and regulation of indoor vector control interventions so it is important to ensure that these studies are adequately powered.

9.
Proc Natl Acad Sci U S A ; 120(8): e2216142120, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36791102

RESUMEN

Invasion of the malaria vector Anopheles stephensi across the Horn of Africa threatens control efforts across the continent, particularly in urban settings where the vector is able to proliferate. Malaria transmission is primarily determined by the abundance of dominant vectors, which often varies seasonally with rainfall. However, it remains unclear how An. stephensi abundance changes throughout the year, despite this being a crucial input to surveillance and control activities. We collate longitudinal catch data from across its endemic range to better understand the vector's seasonal dynamics and explore the implications of this seasonality for malaria surveillance and control across the Horn of Africa. Our analyses reveal pronounced variation in seasonal dynamics, the timing and nature of which are poorly predicted by rainfall patterns. Instead, they are associated with temperature and patterns of land use; frequently differing between rural and urban settings. Our results show that timing entomological surveys to coincide with rainy periods is unlikely to improve the likelihood of detecting An. stephensi. Integrating these results into a malaria transmission model, we show that timing indoor residual spraying campaigns to coincide with peak rainfall offers little improvement in reducing disease burden compared to starting in a random month. Our results suggest that unlike other malaria vectors in Africa, rainfall may be a poor guide to predicting the timing of peaks in An. stephensi-driven malaria transmission. This highlights the urgent need for longitudinal entomological monitoring of the vector in its new environments given recent invasion and potential spread across the continent.


Asunto(s)
Anopheles , Malaria , Animales , Humanos , Malaria/epidemiología , Malaria/prevención & control , Estaciones del Año , Mosquitos Vectores , África/epidemiología , Control de Mosquitos
10.
Nat Commun ; 14(1): 676, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36750566

RESUMEN

Long lasting insecticidal nets (LLINs) provide both direct and indirect protection against malaria. As pyrethroid resistance evolves in mosquito vectors, it will be useful to understand how the specific benefits LLINs afford individuals and communities may be affected. Here we use modelling to show that there is no minimum LLIN usage needed for users and non-users to benefit from community protection. Modelling results also indicate that pyrethroid resistance in local mosquitoes will likely diminish the direct and indirect benefits from insecticides, leaving the barrier effects intact, but LLINs are still expected to provide enhanced benefit over untreated nets even at high levels of pyrethroid resistance.


Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Piretrinas , Animales , Humanos , Control de Mosquitos/métodos , Resistencia a los Insecticidas , Insecticidas/farmacología , Malaria/prevención & control
11.
Parasit Vectors ; 16(1): 21, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670470

RESUMEN

BACKGROUND: The continued spread of insecticide resistance in mosquito vectors of malaria and arboviral diseases may lead to operational failure of insecticide-based interventions if resistance is not monitored and managed efficiently. This study aimed to develop and validate a new WHO glass bottle bioassay method as an alternative to the WHO standard insecticide tube test to monitor mosquito susceptibility to new public health insecticides with particular modes of action, physical properties or both. METHODS: A multi-centre study involving 21 laboratories worldwide generated data on the susceptibility of seven mosquito species (Aedes aegypti, Aedes albopictus, Anopheles gambiae sensu stricto [An. gambiae s.s.], Anopheles funestus, Anopheles stephensi, Anopheles minimus and Anopheles albimanus) to seven public health insecticides in five classes, including pyrethroids (metofluthrin, prallethrin and transfluthrin), neonicotinoids (clothianidin), pyrroles (chlorfenapyr), juvenile hormone mimics (pyriproxyfen) and butenolides (flupyradifurone), in glass bottle assays. The data were analysed using a Bayesian binomial model to determine the concentration-response curves for each insecticide-species combination and to assess the within-bioassay variability in the susceptibility endpoints, namely the concentration that kills 50% and 99% of the test population (LC50 and LC99, respectively) and the concentration that inhibits oviposition of the test population by 50% and 99% (OI50 and OI99), to measure mortality and the sterilizing effect, respectively. RESULTS: Overall, about 200,000 mosquitoes were tested with the new bottle bioassay, and LC50/LC99 or OI50/OI99 values were determined for all insecticides. Variation was seen between laboratories in estimates for some mosquito species-insecticide combinations, while other test results were consistent. The variation was generally greater with transfluthrin and flupyradifurone than with the other compounds tested, especially against Anopheles species. Overall, the mean within-bioassay variability in mortality and oviposition inhibition were < 10% for most mosquito species-insecticide combinations. CONCLUSION: Our findings, based on the largest susceptibility dataset ever produced on mosquitoes, showed that the new WHO bottle bioassay is adequate for evaluating mosquito susceptibility to new and promising public health insecticides currently deployed for vector control. The datasets presented in this study have been used recently by the WHO to establish 17 new insecticide discriminating concentrations (DCs) for either Aedes spp. or Anopheles spp. The bottle bioassay and DCs can now be widely used to monitor baseline insecticide susceptibility of wild populations of vectors of malaria and Aedes-borne diseases worldwide.


Asunto(s)
Anopheles , Insecticidas , Malaria , Piretrinas , Animales , Femenino , Insecticidas/farmacología , Mosquitos Vectores , Salud Pública , Teorema de Bayes , Control de Mosquitos/métodos , Piretrinas/farmacología , Resistencia a los Insecticidas , Bioensayo , Organización Mundial de la Salud
12.
Parasit Vectors ; 15(1): 338, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163071

RESUMEN

BACKGROUND: Near-infrared spectroscopy (NIRS) has the potential to be a useful tool for assessing key entomological parameters of malaria-transmitting mosquitoes, including age, infectious status and species identity. However, before NIRS can be reliably used in the field at scale, methods for killing mosquitoes and conserving samples prior to NIRS scanning need to be further optimized. Historically, mosquitoes used in studies have been killed with chloroform, although this approach is not without health hazards and should not be used in human dwellings. For the application of NIRS scanning it is also unclear which mosquito preservation method to use. The aim of the study reported here was to investigate the use of pyrethrum spray, a commercially available insecticide spray in Burkina Faso, for killing mosquitoes METHODS: Laboratory-reared Anopheles gambiae and Anopheles coluzzii were killed using either a pyrethrum insecticide spray routinely used in studies involving indoor mosquito collections (Kaltox Paalga®; Saphyto, Bobo-Dioulasso, Burkina Faso) or chloroform ("gold standard"). Preservative methods were also investigated to determine their impact on NIRS accuracy in predicting the species of laboratory-reared Anopheles and wild-caught mosquito species. After analysis of fresh samples, mosquitoes were stored in 80% ethanol or in silica gel for 2 weeks and re-analyzed by NIRS. In addition, experimentally infected An. coluzzii and wild-caught An. gambiae sensu lato (s.l.) were scanned as fresh samples to determine whether they contained sporozoites, then stored in the preservatives mentioned above for 2 weeks before being re-analyzed. RESULTS: The difference in the accuracy of NIRS to differentiate between laboratory-reared An. gambiae mosquitoes and An. coluzzii mosquitoes killed with either insecticide (90%) or chloroform (92%) was not substantial. NIRS had an accuracy of 90% in determining mosquito species for mosquitoes killed with chloroform and preserved in ethanol or silica gel. The accuracy was the same when the pyrethrum spray was used to kill mosquitoes followed by preservation in silica gel, but was lower when ethanol was used as a preservative (80%). Regarding infection status, NIRS was able to differentiate between infected and uninfected mosquitoes, with a slightly lower accuracy for both laboratory and wild-caught mosquitoes preserved in silica gel or ethanol. CONCLUSIONS: The results show that NIRS can be used to classify An. gambiae s.l. species killed by pyrethrum spray with no loss of accuracy. This insecticide may have practical advantages over chloroform for the killing of mosquitoes in NIRS analysis.


Asunto(s)
Anopheles , Insecticidas , Piretrinas , Animales , Cloroformo , Etanol , Humanos , Resistencia a los Insecticidas , Insecticidas/farmacología , Mosquitos Vectores , Piretrinas/farmacología , Gel de Sílice , Espectroscopía Infrarroja Corta/métodos
13.
Nat Commun ; 13(1): 3862, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790746

RESUMEN

The cause of malaria transmission has been known for over a century but it is still unclear whether entomological measures are sufficiently reliable to inform policy decisions in human health. Decision-making on the effectiveness of new insecticide-treated nets (ITNs) and the indoor residual spraying of insecticide (IRS) have been based on epidemiological data, typically collected in cluster-randomised control trials. The number of these trials that can be conducted is limited. Here we use a systematic review to highlight that efficacy estimates of the same intervention may vary substantially between trials. Analyses indicate that mosquito data collected in experimental hut trials can be used to parameterize mechanistic models for Plasmodium falciparum malaria and reliably predict the epidemiological efficacy of quick-acting, neuro-acting ITNs and IRS. Results suggest that for certain types of ITNs and IRS using this framework instead of clinical endpoints could support policy and expedite the widespread use of novel technologies.


Asunto(s)
Culicidae , Malaria , Control de Mosquitos , Animales , Culicidae/parasitología , Humanos , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria/epidemiología , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores/parasitología
14.
Am J Trop Med Hyg ; 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35895347

RESUMEN

Vector biologists have long sought the ability to accurately quantify the age of wild mosquito populations, a metric used to measure vector control efficiency. This has proven difficult due to the difficulties of working in the field and the biological complexities of wild mosquitoes. Ideal age grading techniques must overcome both challenges while also providing epidemiologically relevant age measurements. Given these requirements, the Detinova parity technique, which estimates age from the mosquito ovary and tracheole skein morphology, has been most often used for mosquito age grading despite significant limitations, including being based solely on the physiology of ovarian development. Here, we have developed a modernized version of the original mosquito aging method that evaluated wing wear, expanding it to estimate mosquito chronological age from wing scale loss. We conducted laboratory experiments using adult Anopheles gambiae held in insectary cages or mesocosms, the latter of which also featured ivermectin bloodmeal treatments to change the population age structure. Mosquitoes were age graded by parity assessments and both human- and computational-based wing evaluations. Although the Detinova technique was not able to detect differences in age population structure between treated and control mesocosms, significant differences were apparent using the wing scale technique. Analysis of wing images using averaged left- and right-wing pixel intensity scores predicted mosquito age at high accuracy (overall test accuracy: 83.4%, average training accuracy: 89.7%). This suggests that this technique could be an accurate and practical tool for mosquito age grading though further evaluation in wild mosquito populations is required.

15.
BMC Med ; 20(1): 135, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35440085

RESUMEN

BACKGROUND: Sub-Saharan Africa has seen substantial reductions in cases and deaths due to malaria over the past two decades. While this reduction is primarily due to an increasing expansion of interventions, urbanisation has played its part as urban areas typically experience substantially less malaria transmission than rural areas. However, this may be partially lost with the invasion and establishment of Anopheles stephensi. A. stephensi, the primary urban malaria vector in Asia, was first detected in Africa in 2012 in Djibouti and was subsequently identified in Ethiopia in 2016, and later in Sudan and Somalia. In Djibouti, malaria cases have increased 30-fold from 2012 to 2019 though the impact in the wider region remains unclear. METHODS: Here, we have adapted an existing model of mechanistic malaria transmission to estimate the increase in vector density required to explain the trends in malaria cases seen in Djibouti. To account for the observed plasticity in An. stephensi behaviour, and the unknowns of how it will establish in a novel environment, we sample behavioural parameters in order to account for a wide range of uncertainty. This quantification is then applied to Ethiopia, considering temperature-dependent extrinsic incubation periods, pre-existing vector-control interventions and Plasmodium falciparum prevalence in order to assess the potential impact of An. stephensi establishment on P. falciparum transmission. Following this, we estimate the potential impact of scaling up ITN (insecticide-treated nets)/IRS (indoor residual spraying) and implementing piperonyl butoxide (PBO) ITNs and larval source management, as well as their economic costs. RESULTS: We estimate that annual P. falciparum malaria cases could increase by 50% (95% CI 14-90) if no additional interventions are implemented. The implementation of sufficient control measures to reduce malaria transmission to pre-stephensi levels will cost hundreds of millions of USD. CONCLUSIONS: Substantial heterogeneity across the country is predicted and large increases in vector control interventions could be needed to prevent a major public health emergency.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria , Animales , Etiopía/epidemiología , Humanos , Malaria/epidemiología , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Mosquitos Vectores , Plasmodium falciparum , Estudios Prospectivos
16.
PLoS One ; 17(3): e0263446, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35324929

RESUMEN

BACKGROUND: Prospective malaria public health interventions are initially tested for entomological impact using standardised experimental hut trials. In some cases, data are collated as aggregated counts of potential outcomes from mosquito feeding attempts given the presence of an insecticidal intervention. Comprehensive data i.e. full breakdowns of probable outcomes of mosquito feeding attempts, are more rarely available. Bayesian evidence synthesis is a framework that explicitly combines data sources to enable the joint estimation of parameters and their uncertainties. The aggregated and comprehensive data can be combined using an evidence synthesis approach to enhance our inference about the potential impact of vector control products across different settings over time. METHODS: Aggregated and comprehensive data from a meta-analysis of the impact of Pirimiphos-methyl, an indoor residual spray (IRS) product active ingredient, used on wall surfaces to kill mosquitoes and reduce malaria transmission, were analysed using a series of statistical models to understand the benefits and limitations of each. RESULTS: Many more data are available in aggregated format (N = 23 datasets, 4 studies) relative to comprehensive format (N = 2 datasets, 1 study). The evidence synthesis model had the smallest uncertainty at predicting the probability of mosquitoes dying or surviving and blood-feeding. Generating odds ratios from the correlated Bernoulli random sample indicates that when mortality and blood-feeding are positively correlated, as exhibited in our data, the number of successfully fed mosquitoes will be under-estimated. Analysis of either dataset alone is problematic because aggregated data require an assumption of independence and there are few and variable data in the comprehensive format. CONCLUSIONS: We developed an approach to combine sources from trials to maximise the inference that can be made from such data and that is applicable to other systems. Bayesian evidence synthesis enables inference from multiple datasets simultaneously to give a more informative result and highlight conflicts between sources. Advantages and limitations of these models are discussed.


Asunto(s)
Culicidae , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Animales , Teorema de Bayes , Progresión de la Enfermedad , Almacenamiento y Recuperación de la Información , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores , Estudios Prospectivos
17.
Malar J ; 21(1): 96, 2022 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-35305667

RESUMEN

BACKGROUND: Progress achieved by long-lasting insecticidal nets (LLINs) against malaria is threatened by widespread selection of pyrethroid resistance among vector populations. LLINs with non-pyrethroid insecticides are urgently needed. This study aims to assess the insecticide and textile durability of three classes of dual-active ingredient (A.I.) LLINs using techniques derived from established WHO LLIN testing methods to set new standards of evaluation. METHODS: A WHO Phase 3 active ingredients and textile durability study will be carried out within a cluster randomized controlled trial in 40 clusters in Misungwi district, Tanzania. The following treatments will be evaluated: (1) Interceptor®G2 combining chlorfenapyr and the pyrethroid alpha-cypermethrin, (2) Royal Guard® treated with pyriproxyfen and alpha-cypermethrin, (3) Olyset™ Plus which incorporates a synergist piperonyl butoxide and the pyrethroid permethrin, and (4) a reference standard alpha-cypermethrin only LLIN (Interceptor®). 750 nets will be followed in 5 clusters per intervention arm at 6, 12, 24 and 36 months post distribution for survivorship and hole index assessment. A second cohort of 1950 nets per net type will be identified in 10 clusters, of which 30 LLINs will be withdrawn for bio-efficacy and chemical analysis every 6 months up to 36 months and another 30 collected for experimental hut trials every year. Bio-efficacy will be assessed using cone bioassays and tunnel tests against susceptible and resistant laboratory strains of Anopheles gambiae sensu stricto. Efficacy of field-collected nets will be compared in six experimental huts. The main outcomes will be Anopheles mortality up to 72 h post exposure, blood feeding and egg maturation using ovary dissection to assess impact on fecundity. CONCLUSIONS: Study findings will help develop bio-efficacy and physical durability criteria for partner A.I., in relation to the cRCT epidemiological and entomological outcomes, and refine preferred product characteristics of each class of LLIN. If suitable, the bioassay and hut outcomes will be fitted to transmission models to estimate correlation with cRCT outcomes. TRIAL REGISTRATION NUMBER: NCT03554616.


Asunto(s)
Mosquiteros Tratados con Insecticida , Insecticidas , Piretrinas , Femenino , Humanos , Insecticidas/farmacología , Control de Mosquitos/métodos , Mosquitos Vectores , Estudios Prospectivos , Piretrinas/farmacología , Tanzanía
18.
Lancet Planet Health ; 6(2): e100-e109, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35065707

RESUMEN

BACKGROUND: Concern that insecticide resistant mosquitoes are threatening malaria control has driven the development of new types of insecticide treated nets (ITNs) and indoor residual spraying (IRS) of insecticide. Malaria control programmes have a choice of vector control interventions although it is unclear which controls should be used to combat the disease. The study aimed at producing a framework to easily compare the public health impact and cost-effectiveness of different malaria prevention measures currently in widespread use. METHODS: We used published data from experimental hut trials conducted across Africa to characterise the entomological effect of pyrethroid-only ITNs versus ITNs combining a pyrethroid insecticide with the synergist piperonyl butoxide (PBO). We use these estimates to parameterise a dynamic mathematical model of Plasmodium falciparum malaria which is validated for two sites by comparing simulated results to empirical data from randomised control trials (RCTs) in Tanzania and Uganda. We extrapolated model simulations for a series of potential scenarios likely across the sub-Saharan African region and include results in an online tool (Malaria INtervention Tool [MINT]) that aims to identify optimum vector control intervention packages for scenarios with varying budget, price, entomological and epidemiological factors. FINDINGS: Our model indicates that switching from pyrethroid-only to pyrethroid-PBO ITNs could averted up to twice as many cases, although the additional benefit is highly variable and depends on the setting conditions. We project that annual delivery of long-lasting, non-pyrethroid IRS would prevent substantially more cases over 3-years, while pyrethroid-PBO ITNs tend to be the most cost-effective intervention per case averted. The model was able to predict prevalence and efficacy against prevalence in both RCTs for the intervention types tested. MINT is applicable to regions of sub-Saharan Africa with endemic malaria and provides users with a method of designing intervention packages given their setting and budget. INTERPRETATION: The most cost-effective vector control package will vary locally. Models able to recreate results of RCTs can be used to extrapolate outcomes elsewhere to support evidence-based decision making for investment in vector control. FUNDING: Medical Research Council, IVCC, Wellcome Trust. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Asunto(s)
Mosquiteros Tratados con Insecticida , Malaria , Animales , Malaria/epidemiología , Malaria/prevención & control , Control de Mosquitos/métodos , Butóxido de Piperonilo , Tanzanía
19.
Malar J ; 21(1): 19, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012559

RESUMEN

BACKGROUND: Vector control tools have contributed significantly to a reduction in malaria burden since 2000, primarily through insecticidal-treated bed nets (ITNs) and indoor residual spraying. In the face of increasing insecticide resistance in key malaria vector species, global progress in malaria control has stalled. Innovative tools, such as dual active ingredient (dual-AI) ITNs that are effective at killing insecticide-resistant mosquitoes have recently been introduced. However, large-scale uptake has been slow for several reasons, including higher costs and limited evidence on their incremental effectiveness and cost-effectiveness. The present report describes the design of several observational studies aimed to determine the effectiveness and cost-effectiveness of dual-AI ITNs, compared to standard pyrethroid-only ITNs, at reducing malaria transmission across a variety of transmission settings. METHODS: Observational pilot studies are ongoing in Burkina Faso, Mozambique, Nigeria, and Rwanda, leveraging dual-AI ITN rollouts nested within the 2019 and 2020 mass distribution campaigns in each country. Enhanced surveillance occurring in select study districts include annual cross-sectional surveys during peak transmission seasons, monthly entomological surveillance, passive case detection using routine health facility surveillance systems, and studies on human behaviour and ITN use patterns. Data will compare changes in malaria transmission and disease burden in districts receiving dual-AI ITNs to similar districts receiving standard pyrethroid-only ITNs over three years. The costs of net distribution will be calculated using the provider perspective including financial and economic costs, and a cost-effectiveness analysis will assess incremental cost-effectiveness ratios for Interceptor® G2, Royal Guard®, and piperonyl butoxide ITNs in comparison to standard pyrethroid-only ITNs, based on incidence rate ratios calculated from routine data. CONCLUSIONS: Evidence of the effectiveness and cost-effectiveness of the dual-AI ITNs from these pilot studies will complement evidence from two contemporary cluster randomized control trials, one in Benin and one in Tanzania, to provide key information to malaria control programmes, policymakers, and donors to help guide decision-making and planning for local malaria control and elimination strategies. Understanding the breadth of contexts where these dual-AI ITNs are most effective and collecting robust information on factors influencing comparative effectiveness could improve uptake and availability and help maximize their impact.


Asunto(s)
Costo de Enfermedad , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Malaria/prevención & control , Control de Mosquitos/estadística & datos numéricos , África del Sur del Sahara/epidemiología , Humanos , Incidencia , Mosquiteros Tratados con Insecticida/clasificación , Malaria/epidemiología , Proyectos Piloto , Prevalencia
20.
Malar J ; 21(1): 20, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35016676

RESUMEN

BACKGROUND: Pyrethroid-PBO nets were conditionally recommended for control of malaria transmitted by mosquitoes with oxidase-based pyrethroid-resistance based on epidemiological evidence of additional protective effect with Olyset Plus compared to a pyrethroid-only net (Olyset Net). Entomological studies can be used to assess the comparative performance of other brands of pyrethroid-PBO ITNs to Olyset Plus. METHODS: An experimental hut trial was performed in Cové, Benin to compare PermaNet 3.0 (deltamethrin plus PBO on roof panel only) to Olyset Plus (permethrin plus PBO on all panels) against wild pyrethroid-resistant Anopheles gambiae sensu lato (s.l.) following World Health Organization (WHO) guidelines. Both nets were tested unwashed and after 20 standardized washes compared to Olyset Net. Laboratory bioassays were also performed to help explain findings in the experimental huts. RESULTS: With unwashed nets, mosquito mortality was higher in huts with PermaNet 3.0 compared to Olyset Plus (41% vs. 28%, P < 0.001). After 20 washes, mortality declined significantly with PermaNet 3.0 (41% unwashed vs. 17% after washing P < 0.001), but not with Olyset Plus (28% unwashed vs. 24% after washing P = 0.433); Olyset Plus induced significantly higher mortality than PermaNet 3.0 and Olyset Net after 20 washes. PermaNet 3.0 showed a higher wash retention of PBO compared to Olyset Plus. A non-inferiority analysis performed with data from unwashed and washed nets together using a margin recommended by the WHO, showed that PermaNet 3.0 was non-inferior to Olyset Plus in terms of mosquito mortality (25% with Olyset Plus vs. 27% with PermaNet 3.0, OR = 1.528, 95%CI = 1.02-2.29) but not in reducing mosquito feeding (25% with Olyset Plus vs. 30% with PermaNet 3.0, OR = 1.192, 95%CI = 0.77-1.84). Both pyrethroid-PBO nets were superior to Olyset Net. CONCLUSION: Olyset Plus outperformed PermaNet 3.0 in terms of its ability to cause greater margins of improved mosquito mortality compared to a standard pyrethroid net, after multiple standardized washes. However, using a margin of non-inferiority defined by the WHO, PermaNet 3.0 was non-inferior to Olyset Plus in inducing mosquito mortality. Considering the low levels of mortality observed and increasing pyrethroid-resistance in West Africa, it is unclear whether either of these nets would demonstrate the same epidemiological impact observed in community trials in East Africa.


Asunto(s)
Anopheles/efectos de los fármacos , Resistencia a los Insecticidas/efectos de los fármacos , Mosquiteros Tratados con Insecticida , Malaria/prevención & control , Malaria/transmisión , Control de Mosquitos/métodos , Butóxido de Piperonilo/farmacología , Piretrinas/farmacología , Animales , Benin , Mosquitos Vectores/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...