Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Clin Transl Radiat Oncol ; 47: 100797, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831754

RESUMEN

Background and purpose: Treatment planning for MR-guided stereotactic body radiotherapy (SBRT) for pancreatic tumors can be challenging, leading to a wide variation of protocols and practices. This study aimed to harmonize treatment planning by developing a consensus planning protocol for MR-guided pancreas SBRT on a 1.5 T MR-Linac. Materials and methods: A consortium was founded of thirteen centers that treat pancreatic tumors on a 1.5 T MR-Linac. A phased planning exercise was conducted in which centers iteratively created treatment plans for two cases of pancreatic cancer. Each phase was followed by a meeting where the instructions for the next phase were determined. After three phases, a consensus protocol was reached. Results: In the benchmarking phase (phase I), substantial variation between the SBRT protocols became apparent (for example, the gross tumor volume (GTV) D99% ranged between 36.8 - 53.7 Gy for case 1, 22.6 - 35.5 Gy for case 2). The next phase involved planning according to the same basic dosimetric objectives, constraints, and planning margins (phase II), which led to a large degree of harmonization (GTV D99% range: 47.9-53.6 Gy for case 1, 33.9-36.6 Gy for case 2). In phase III, the final consensus protocol was formulated in a treatment planning system template and again used for treatment planning. This not only resulted in further dosimetric harmonization (GTV D99% range: 48.2-50.9 Gy for case 1, 33.5-36.0 Gy for case 2) but also in less variation of estimated treatment delivery times. Conclusion: A global consensus protocol has been developed for treatment planning for MR-guided pancreatic SBRT on a 1.5 T MR-Linac. Aside from harmonizing the large variation in the current clinical practice, this protocol can provide a starting point for centers that are planning to treat pancreatic tumors on MR-Linac systems.

2.
J Med Imaging Radiat Sci ; 55(2): 281-288, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38609834

RESUMEN

PURPOSE/OBJECTIVE: To determine the impact of a MR-based contouring atlas for male pelvis radiotherapy delineation on inter-observer variation to support radiographer led real-time magnetic resonance image guided adaptive radiotherapy (MRgART). MATERIAL/METHODS: Eight RTTs contoured 25 MR images in the Monaco treatment planning system (Monaco 5.40.01), from 5 patients. The prostate, seminal vesicles, bladder, and rectum were delineated before and after the introduction of an atlas developed through multi-disciplinary consensus. Inter-observer contour variations (volume), time to contour and observer contouring confidence were determined at both time-points using a 5-point Likert scale. Descriptive statistics were used to analyse both continuous and categorical variables. Dice similarity coefficient (DSC), Dice-Jaccard coefficient (DJC) and Hausdorff distance were used to calculate similarity between observers. RESULTS: Although variation in volume definition decreased for all structures among all observers post intervention, the change was not statistically significant. DSC and DJC measurements remained consistent following the introduction of the atlas for all observers. The highest similarity was found in the bladder and prostate whilst the lowest was the seminal vesicles. The mean contouring time for all observers was reduced by 50% following the introduction of the atlas (53 to 27 minutes, p=0.01). For all structures across all observers, the mean contouring confidence increased significantly from 2.3 to 3.5 out of 5 (p=0.02). CONCLUSION: Although no significant improvements were observed in contour variation amongst observers, the introduction of the consensus-based contouring atlas improved contouring confidence and speed; key factors for a real-time RTT-led MRgART.


Asunto(s)
Imagen por Resonancia Magnética , Variaciones Dependientes del Observador , Neoplasias de la Próstata , Radioterapia Guiada por Imagen , Humanos , Masculino , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/diagnóstico por imagen , Radioterapia Guiada por Imagen/métodos , Pelvis/diagnóstico por imagen , Planificación de la Radioterapia Asistida por Computador/métodos , Atlas como Asunto , Próstata/diagnóstico por imagen
3.
J Appl Clin Med Phys ; 25(4): e14262, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38234116

RESUMEN

PURPOSE: To investigate whether a novel signal derived from tumor motion allows more precise sorting of 4D-magnetic resonance (4D-MR) image data than do signals based on normal anatomy, reducing levels of stitching artifacts within sorted lung tumor volumes. METHODS: (4D-MRI) scans were collected for 10 lung cancer patients using a 2D T2-weighted single-shot turbo spin echo sequence, obtaining 25 repeat frames per image slice. For each slice, a tumor-motion signal was generated using the first principal component of movement in the tumor neighborhood (TumorPC1). Signals were also generated from displacements of the diaphragm (DIA) and upper and lower chest wall (UCW/LCW) and from slice body area changes (BA). Pearson r coefficients of correlations between observed tumor movement and respiratory signals were determined. TumorPC1, DIA, and UCW signals were used to compile image stacks showing each patient's tumor volume in a respiratory phase. Unsorted image stacks were also built for comparison. For each image stack, the presence of stitching artifacts was assessed by measuring the roughness of the compiled tumor surface according to a roughness metric (Rg). Statistical differences in weighted means of Rg between any two signals were determined using an exact permutation test. RESULTS: The TumorPC1 signal was most strongly correlated with superior-inferior tumor motion, and had significantly higher Pearson r values (median 0.86) than those determined for correlations of UCW, LCW, and BA with superior-inferior tumor motion (p < 0.05). Weighted means of ratios of Rg values in TumorPC1 image stacks to those in unsorted, UCW, and DIA stacks were 0.67, 0.69, and 0.71, all significantly favoring TumorPC1 (p = 0.02-0.05). For other pairs of signals, weighted mean ratios did not differ significantly from one. CONCLUSION: Tumor volumes were smoother in 3D image stacks compiled using the first principal component of tumor motion than in stacks compiled with signals based on normal anatomy.


Asunto(s)
Artefactos , Neoplasias Pulmonares , Humanos , Carga Tumoral , Neoplasias Pulmonares/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Pulmón , Respiración
4.
Phys Med ; 112: 102652, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37552912

RESUMEN

PURPOSE: The National Health Service (NHS) in the United Kingdom (UK) is aiming to be carbon net zero by 2040 to help limit the dangerous effects of climate change. Radiotherapy contributes to this with potential sources quantified here. METHOD: Activity data for 42 patients from within the breast IMRT and prostate VMAT pathways were collected. Data for 20 prostate patients was also collected from 3 other centres to enable cross centre comparison. A process-based, bottom-up approach was used to calculate the carbon footprint. Additionally, patients were split into pre-COVID and COVID groups to assess the impact of protocol changes due to the pandemic. RESULTS: The calculated carbon footprint for prostate and breast pre-COVID were 148 kgCO2e and 101 kgCO2e respectively, and 226 kgCO2e and 75 kgCO2e respectively during COVID. The energy usage by the linac during treatment for a total course of radiotherapy for prostate treatments was 2-3 kWh and about 1 kWh for breast treatments. Patient travel made up the largest proportion (70-80%) of the calculated carbon footprint, with linac idle power second with âˆ¼ 10% and PPE and SF6 leakage were both between 2 and 4%. CONCLUSION: These initial findings highlight that the biggest contributor to the external beam radiotherapy carbon footprint was patient travel, which may motivate increased used of hypofractionation. Many assumptions and boundaries have been set on the data gathered, which limit the wider application of these results. However, they provide a useful foundation for future more comprehensive life cycle assessments.


Asunto(s)
COVID-19 , Huella de Carbono , Masculino , Humanos , Medicina Estatal , COVID-19/radioterapia , Reino Unido , Próstata
5.
Pract Radiat Oncol ; 13(6): e471-e474, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37414248

RESUMEN

Sulfur hexafluoride (SF6) is a widely used insulating gas in medical linear accelerators (LINACs) due to its high dielectric strength, heat transfer capabilities, and chemical stability. However, its long lifespan and high Global Warming Potential (GWP) make it a significant contributor to the environmental impact of radiation oncology. SF6 has an atmospheric lifespan of 3200 years and a GWP 23,000 times that of carbon dioxide. The amount of SF6 that can be emitted through leakage from machines is also concerning. It is estimated that the approximate 15,042 LINACs globally may leak up to 64,884,185.9 carbon dioxide equivalent per year, which is the equivalent greenhouse gas emissions of 13,981 gasoline-powered passenger vehicles driven for 1 year. Despite being regulated as a greenhouse gas under the United Nations Framework Convention on Climate Change, SF6 use within health care is often exempt from regulation, and only a few states in the United States have specific SF6 management regulations. This article highlights the need for radiation oncology centers and LINAC manufacturers to take responsibility for minimizing SF6 emissions. Programs that track usage and disposal, conduct life-cycle assessments, and implement leakage detection can help identify SF6 sources and promote recovery and recycling. Manufacturers are investing in research and development to identify alternative gases, improve leak detection, and minimize SF6 gas leakage during operation and maintenance. Alternative gases with lower GWP, such as nitrogen, compressed air, and perfluoropropane, may be considered as replacements for SF6; however, more research is needed to evaluate their feasibility and performance in radiation oncology. The article emphasizes the need for all sectors, including health care, to reduce their emissions to meet the goals of the Paris Agreement and ensure the sustainability of health care and our patients. Although SF6 is practical in radiation oncology, its environmental impact and contribution to the climate crisis cannot be ignored. Radiation oncology centers and manufacturers must take responsibility for reducing SF6 emissions by implementing best practices and promoting research and development around alternatives. To meet global emissions reduction goals and protect both planetary and patient health, the reduction of SF6 emissions will be essential.


Asunto(s)
Gases de Efecto Invernadero , Oncología por Radiación , Humanos , Estados Unidos , Dióxido de Carbono/análisis , Gases/análisis , Hexafluoruro de Azufre/análisis
6.
Phys Med Biol ; 68(2)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36549006

RESUMEN

Objective.Patients treated for cervical cancer exhibit large inter and intra-fraction anatomical changes. The Unity MR-Linac (MRL) can image these patients with MR prior to and during treatment which enables daily plan adaptation. However, the MRL has a limited treatment field in the sup/inf direction of 22 cm which can restrict the treatment of patients who require longer treatment fields. Here we explore potential adaptive workflows in combination with a dual isocentre approach, to widen the range of cervix patients that can benefit from this treatment.Approach.Ten cervical cancer patients were retrospectively planned with a dual isocentre technique to deliver 45 Gy in 25 fractions. 5 node-negative and 5 node-positive patients were planned using the EMBRACE II protocol. A 2 cm overlap region between the two isocentres was positioned entirely in the nodal region. A treatment workflow was simulated to account for inter-fraction anatomical change. Isocentre shifts of 3 and 6 mm were applied to investigate the effect of intra-fraction motion.Main results.Dual isocentre adapted plans ensured significantly better coverage than non-adapted (recalculated) plans with a larger benefit seen for the node-negative cases. The difference to the reference plan for the V4275 cGy to the ITV was -0.8 cGy and -8.2 cGy for the adapted and recalculated plans respectively. Movements superiorly did not affect the coverage of the ITV by more than 1%, but shifting it inferiorly caused the ITV coverage on the plan to reduce by ∼2.4% per mm.Significance.A dual isocentre technique for cervical cancer treatments and adaptive workflows have been demonstrated to recover the required plan quality for inter-fraction changes. This illustrates the feasibility of a dual isocentre technique for the MRL.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Estudios de Factibilidad
7.
BMJ Open ; 12(11): e068580, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36351720

RESUMEN

INTRODUCTION: Radiotherapy is the most common curative treatment for non-metastatic prostate cancer; however, up to 13% of patients will develop local recurrence within 10 years. Patients can undergo further and potentially curative treatment including salvage surgery, brachytherapy (BT), external beam radiotherapy, high-intensity focused ultrasound and cryotherapy. Systematic review shows that high-dose-rate (HDR) BT and stereotactic body radiotherapy (SBRT) have the best outcomes in terms of biochemical control and lowest side effects. The reirradiation options for previously irradiated prostate cancer (RO-PIP) trial aims to determine the feasibility of recruitment to a trial randomising patients to salvage HDR-BT or SBRT and provide prospective data on patient recorded toxicity outcomes that will inform a future phase III trial. METHODS AND ANALYSIS: The primary endpoint of the RO-PIP feasibility study is to evaluate the patient recruitment potential over 2 years to a trial randomising to either SBRT or HDR-BT for patients who develop local recurrence of prostate cancer following previous radiation therapy. The aim is to recruit 60 patients across 3 sites over 2 years and randomise 1:1 to SBRT or HDR-BT. Secondary objectives include recording clinician and patient-reported outcome measures to evaluate treatment-related toxicity. In addition, the study aims to identify potential imaging, genomic and proteomic biomarkers that are predictive of toxicity and outcome based on hypoxia status, a prognostic marker of prostate cancer. ETHICS AND DISSEMINATION: This study has been approved by the Yorkshire and The Humber-Bradford Leeds Research Ethics Committee (Reference: 21/YH/0305, IRAS: 297060, January 2022). The results will be presented in national and international conferences, published in peer-reviewed journals and will be communicated to relevant stakeholders. A plain English report will be shared with the study participants, patients' organisations and media. TRIAL REGISTRATION NUMBER: ISRCTN 12238218 (Amy Ackroyd NIHR CPMS Team).


Asunto(s)
Braquiterapia , Neoplasias de la Próstata , Radiocirugia , Reirradiación , Masculino , Humanos , Braquiterapia/efectos adversos , Braquiterapia/métodos , Radiocirugia/efectos adversos , Radiocirugia/métodos , Estudios de Factibilidad , Proteómica , Estudios Prospectivos , Dosificación Radioterapéutica , Neoplasias de la Próstata/patología
8.
Phys Imaging Radiat Oncol ; 24: 121-128, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36405563

RESUMEN

Background and purpose: Deep learning contouring (DLC) has the potential to decrease contouring time and variability of organ contours. This work evaluates the effectiveness of DLC for prostate and head and neck across four radiotherapy centres using a commercial system. Materials and methods: Computed tomography scans of 123 prostate and 310 head and neck patients were evaluated. Besides one head and neck model, generic DLC models were used. Contouring time using centres' existing clinical methods and contour editing time after DLC were compared. Timing was evaluated using paired and non-paired studies. Commercial software or in-house scripts assessed dice similarity coefficient (DSC) and distance to agreement (DTA). One centre assessed head and neck inter-observer variability. Results: The mean contouring time saved for prostate structures using DLC compared to the existing clinical method was 5.9 ± 3.5 min. The best agreement was shown for the femoral heads (median DSC 0.92 ± 0.03, median DTA 1.5 ± 0.3 mm) and the worst for the rectum (median DSC 0.68 ± 0.04, median DTA 4.6 ± 0.6 mm). The mean contouring time saved for head and neck structures using DLC was 16.2 ± 8.6 min. For one centre there was no DLC time-saving compared to an atlas-based method. DLC contours reduced inter-observer variability compared to manual contours for the brainstem, left parotid gland and left submandibular gland. Conclusions: Generic prostate and head and neck DLC models can provide time-savings which can be assessed with paired or non-paired studies to integrate with clinical workload. Reducing inter-observer variability potential has been shown.

10.
Med Phys ; 49(1): 510-520, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34741308

RESUMEN

PURPOSE: Gadolinium-based contrast agents (GBCAs) may add value to magnetic resonance (MR)-only radiotherapy (RT) workflows including on hybrid machines such as the MR Linac. The impact of GBCAs on RT dose distributions however have not been well studied. This work used retrospective GBCA-enhanced datasets to assess the dosimetric effect of GBCAs on head and neck plans. METHODS: Ten patients with oropharyngeal squamous cell carcinoma receiving RT from November 2018 to April 2020 were included in this study. RT planning included contrast-enhanced computed tomography (CT) and MR scans. A contrast agent "contour" was defined by delineating GBCA-enhanced regions using an agreed window/level threshold, transferred to the planning CT and given a standardized electron density (ED) of 1.149 in the Monaco treatment planning system (Elekta AB). Four plans were per patient calculated and compared using two methods: (1) optimized without contrast (Plan A) then recalculated with ED (Plan B), and (2) optimized with contrast ED (Plan C) then without (Plan D). For target parameters minimum and maximum doses to 1cc of PTVs, D95 values, and percent dose differences were calculated. Dose differences for organs-at-risk (OARs) were calculated as a percentage of the clinical tolerance value. For the purposes of this study, ±2% over the whole treatment course was considered to be a clinically acceptable dose deviation. Wilcoxon-signed rank tests were used to determine any dose differences within and between the two methods of optimization and recalculation (p < 0.05). Pearson's correlations were used to establish the relationship between gadolinium uptake volume in a structure (i.e., proportion of structure covered by a density override) and the resulting dose difference. RESULTS: The median percent dose differences for key reportable dosimetric parameters between non-contrast and simulated contrast plans were <1.2% over all fractions over all patients for reportable target parameters (mean 0.34%, range 0.22%-1.02%). The percent dose differences for maximum dose to 1cc of both PTV1 and PTV2 were significantly different after application of density override (p < 0.05) but only in method 2 (Plan C vs. Plan D). For D95 PTV1, there was a statistically significant effect of density override (p < 0.01), however only in method 1 (Plan A vs. Plan B). There were no significant differences between calculation methods of the impact of contrast in most target parameters with the exception of D95 PTV1 (p < 0.01) and for D95 PTV2 (p < 0.05). The median percent dose differences for reportable OAR parameters as a percentage of clinical planning tolerances were <2.0% over a full treatment course (mean 0.65%, range 0.27%-1.62%). There were no significant differences in dose to OARs within or between methods for contrast impact assessment. CONCLUSIONS: Dose differences to targets and OARs in oropharyngeal cancer treatment due to the presence of GBCA were minimal, and this work suggests that prospective in vivo evaluations of impact may not be necessary in this clinical site. Accounting for GBCAs may not be needed in daily adaptive workflows on the MR Linac.


Asunto(s)
Gadolinio , Radioterapia de Intensidad Modulada , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Órganos en Riesgo , Estudios Prospectivos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Estudios Retrospectivos
11.
Front Oncol ; 11: 617681, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777759

RESUMEN

Curative-intent radiotherapy plays an integral role in the treatment of lung cancer and therefore improving its therapeutic index is vital. MR guided radiotherapy (MRgRT) systems are the latest technological advance which may help with achieving this aim. The majority of MRgRT treatments delivered to date have been stereotactic body radiation therapy (SBRT) based and include the treatment of (ultra-) central tumors. However, there is a move to also implement MRgRT as curative-intent treatment for patients with inoperable locally advanced NSCLC. This paper presents the initial clinical experience of using the two commercially available systems to date: the ViewRay MRIdian and Elekta Unity. The challenges and potential solutions associated with MRgRT in lung cancer will also be highlighted.

12.
Radiother Oncol ; 159: 112-118, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33775713

RESUMEN

PURPOSE: This study compared MRI to CBCT for the identification and registration of lymph nodes (LN) in patients with locally advanced (LA)-NSCLC, to assess the suitability of targeting LNs in future MR-image guided radiotherapy (MRgRT) workflows. METHOD: Radiotherapy radiographers carried out Visual Grading Analysis (VGA) assessment of image quality, LN registration and graded their confidence in registration for each of the 24 LNs on CBCT and two MR sequences, MR1 (T2w Turbo Spin Echo) and MR2 (T1w DIXON water only image). RESULTS: Pre-registration image quality assessment revealed MR1 and MR2 as significantly superior to CBCT in terms of image quality (p ≤ 0.01). No significant differences were noted in interobserver variability for LN registration between CBCT, MR1 and MR2. Observers were more confident in their MR registrations compared to their CBCT based LN registrations (p ≤ 0.02). SUMMARY: Interobserver setup correction variability was not found to be significantly different between CBCT and MR. Image quality and registration confidence were found to be superior for MRI sequences. This is a promising step towards MR-guided radiotherapy for the treatment of LA-NSCLC.


Asunto(s)
Neoplasias Pulmonares , Radioterapia Guiada por Imagen , Tomografía Computarizada de Haz Cónico Espiral , Tomografía Computarizada de Haz Cónico , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Ganglios Linfáticos/diagnóstico por imagen , Imagen por Resonancia Magnética , Planificación de la Radioterapia Asistida por Computador
13.
Phys Imaging Radiat Oncol ; 15: 80-84, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33163632

RESUMEN

BACKGROUND AND PURPOSE: Magnetic Resonance Imaging (MRI) is increasingly being used in radiotherapy (RT). However, geometric distortions are a known challenge of using MRI in RT. The aim of this study was to demonstrate feasibility of a national audit of MRI geometric distortions. This was achieved by assessing large field of view (FOV) MRI distortions on a number of scanners used clinically for RT. MATERIALS AND METHODS: MRI scans of a large FOV MRI geometric distortion phantom were acquired on 11 MRI scanners that are used clinically for RT in the UK. The mean and maximum distortions and variance between scanners were reported at different distances from the isocentre. RESULTS: For a small FOV representing a brain (100-150 mm from isocentre) all distortions were < 2 mm except for the maximum distortion of one scanner. For a large FOV representing a head and neck/pelvis (200-250 mm from isocentre) mean distortions were < 2 mm except for one scanner, maximum distortions were > 10 mm in some cases. The variance between scanners was low and was found to increase with distance from isocentre. CONCLUSIONS: This study demonstrated feasibility of the technique to be repeated in a country wide geometric distortion audit of all MRI scanners used clinically for RT. Recommendations were made for performing such an audit and how to derive acceptable limits of distortion in such an audit.

14.
Med Phys ; 47(6): 2484-2494, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32144781

RESUMEN

PURPOSE: Due to differences in attenuation and the electron return effect (ERE), the presence of gas can increase the risk of toxicity in organs at risk (OAR) during magnetic resonance-guided radiotherapy (MRgRT). Current adaptive MRgRT workflows using density overrides negate gas from the dose calculation, meaning that the effects of ERE around gas are not taken into account. In order to achieve an accurate adaptive MRgRT treatment, we should be able to quickly evaluate whether gas present during treatment causes dose constraint violation during an MRgRT fraction. We propose an analytic method for predicting dose perturbations caused by air cavities in OARs during MRgRT. METHOD: Ten virtual water phantoms were created: nine containing a centrally located spherical air cavity and a reference phantom without an air cavity. Monte Carlo dose calculations were produced to irradiate the phantoms with a single 7 MV photon beam under the influence of a 1.5 T transverse magnetic field (Monaco 5.19.02 Treatment Panning System (TPS) (Elekta AB, Stockholm, Sweden)). Dose distributions of the phantoms with and without air cavities were compared. We used a spherical coordinate system originating in the center of the cavity to sample the dose distributions and calculate the dose perturbation as a result of the presence of each air cavity, ∆D%(θ,Φ)calc . . Dose effects due to ERE and differences in attenuation due to density changes were considered separately. Least squared analysis was used to fit the calculated dose perturbations to mathematical functions. Effects due to ERE were fit to a modulated sinusoidal function and those due to attenuation differences were fit to a 2D Gaussian function. We used the fits to derive a single equation describing dose perturbations around spherical air cavities as a function of angles, θ, Φ, distance from cavity surface, d, and cavity radius, r. We measured the fitting error by calculating the residual error (RE); the difference between the calculated and fitted dose perturbation. RESULTS: Both ERE and differences in attenuation contribute toward the total dose effects of air cavities in MRgRT. Whereas ERE dominates close to the surface of the cavities, attenuation effects dominate at distances >0.5 cm from the cavities. We showed that dose effects around a spherical air cavity (≤1 cm from the surface) due to ERE fit a modulated sinusoidal function with mean (RE) ≤-1.4E-5% and root mean square error (rms) (RE) ≤4.1%. Effects due to attenuation differences fit a Gaussian function with mean (RE) ≤0.7% and rms (RE) ≤1.8%. Our general equation, which we verified using multiple sizes of spherical and cylindrical air cavity, fits Monte Carlo simulated data with mean (RE) ≤±0.9% and rms (RE) ≤6.9%. CONCLUSION: We show that local dose perturbations around unplanned spherical air cavities during MRgRT can be well characterized analytically. We present an equation that can be incorporated into the clinical workflow to allow for fast evaluation of dose effects of unplanned gas. We also envision this method contributing to the clinical implementation of real time adaptive radiotherapy (ART) for MRgRT using MRI planning.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen , Espectroscopía de Resonancia Magnética , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica , Suecia
15.
J Med Imaging Radiat Oncol ; 64(1): 163-177, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31646742

RESUMEN

Magnetic resonance-guided radiation therapy (MRgRT) is a promising approach to improving clinical outcomes for patients treated with radiation therapy. The roles of image guidance, adaptive planning and magnetic resonance imaging in radiation therapy have been increasing over the last two decades. Technical advances have led to the feasible combination of magnetic resonance imaging and radiation therapy technologies, leading to improved soft-tissue visualisation, assessment of inter- and intrafraction motion, motion management, online adaptive radiation therapy and the incorporation of functional information into treatment. MRgRT can potentially transform radiation oncology by improving tumour control and quality of life after radiation therapy and increasing convenience of treatment by shortening treatment courses for patients. Multiple groups have developed clinical implementations of MRgRT predominantly in the abdomen and pelvis, with patients having been treated since 2014. While studies of MRgRT have primarily been dosimetric so far, an increasing number of trials are underway examining the potential clinical benefits of MRgRT, with coordinated efforts to rigorously evaluate the benefits of the promising technology. This review discusses the current implementations, studies, potential benefits and challenges of MRgRT.


Asunto(s)
Imagen por Resonancia Magnética Intervencional/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Radioterapia Guiada por Imagen/métodos , Humanos
16.
Med Phys ; 46(12): 5807-5815, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31600837

RESUMEN

PURPOSE: It has been proposed that beam modulation and opposing beam configurations can cancel effects of the Electron Return Effect (ERE) during MR-guided radiotherapy (MRgRT). However, this may not always be the case for unplanned gas cavities outside of the target in the pelvic region. We evaluate dosimetric effects, including effects in the rectal wall, due to unplanned spherical air cavities during MRgRT. METHODS: Nine virtual cuboid water phantoms containing spherical air cavities (0.5-7.5 cm diameter) and a reference phantom without air were created. Monte Carlo dose calculations of 7 MV photons under the influence of a 1.5 T transverse magnetic field were produced using Monaco 5.19.02 Treatment Planning System (TPS) (Elekta AB, Stockholm, Sweden). Cavities in the path of a single and multiple beam plans were considered. Dose distributions of phantoms with and without air cavities were compared (ΔD% ) using a spherical coordinate system originating in the center of the cavity. Effects in the rectal wall were quantified by comparing dose volume histogram (DVH) parameters for solid and gaseous filling from simulated rectal wall structures. RESULTS: Max(ΔD% ) of ~70% and 20% were observed around large cavities in the path of a single and multiple beam plans, respectively. Approximately 45 cm3 of phantom surrounding the largest cavity in a single beam received dose changes of >10%. Dmean in the rectal wall was unchanged when comparing gaseous and solid filling in the path of a single beam; however, D1cc and Dmax increased by up to ~45% and ~63%, respectively. CONCLUSIONS: Unplanned gas cavities in the path of a single beam during pelvic MRgRT with a 1.5 T transverse magnetic field cause dose changes which may impact toxicity in the rectal wall, depending on local dose and fractionation. Effects are reduced but not eliminated with a five-beam plan.


Asunto(s)
Gases , Imagen por Resonancia Magnética , Método de Montecarlo , Pelvis/diagnóstico por imagen , Pelvis/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen , Fantasmas de Imagen , Radiometría , Recto/diagnóstico por imagen , Recto/efectos de la radiación
17.
J Appl Clin Med Phys ; 20(1): 43-49, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30371972

RESUMEN

PURPOSE: For the 1.5 T Elekta MR-Linac it is essential that the optimisation of a treatment plan accounts for the electron return effect on the planned dose distribution. The ability of two algorithms for the first stage fluence optimisation, pencil beam (PB) and Monte Carlo (MC), to produce acceptable plan quality was investigated. Optimisation time for each algorithm was also compared. METHODS: Ten head and neck patients, ten lung patients and five prostate patients were selected from the clinical archive. These were retrospectively planned using a research version of Monaco with both the PB and MC algorithms for the fluence optimisation stage. After full optimisation DVH parameters, optimisation time and the number of Monitor Units (MU) as a measure of plan complexity were extracted. RESULTS: There were no clinically significant differences between any of the DVH parameters studied or the total number of MUs between using PB or MC for stage 1 optimisation across the three patient groups. However, planning time increased by a factor of ten using MC algorithms for stage 1. CONCLUSION: The use of MC calculations compared to PB, for stage 1 fluence optimisation, results in increased planning time without clinical improvement in plan quality or reduction in complexity and is therefore not necessary.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias Pulmonares/radioterapia , Aceleradores de Partículas/instrumentación , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/normas , Humanos , Masculino , Método de Montecarlo , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos
18.
Phys Med Biol ; 63(12): 125020, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29790861

RESUMEN

The MR-Linac will provide excellent soft tissue contrast for on-treatment imaging. It is well known that the electron return effect (ERE) results in areas of increased and decreased dose at air/tissue boundaries, which can be compensated for in plan optimisation. However, anatomical changes may affect the quality of this compensation. In this paper we aim to quantify the interaction of anatomical changes with ERE in head and neck (H&N) cancer patients. Twenty patients treated with either 66 Gy or 60 Gy in 30 fractions were selected. Ten had significant weight-loss during treatment requiring repeat CT (rCT) and ten had PTVs close to the sinus cavity. Plans were optimised using Monaco to meet the departmental dose constraints and copied to the rCT and re-calculated. For the sinus patients, we optimised plans with full and empty sinus at both 0 T and 1.5 T. The effect of the opposite filling state was next evaluated. No clinically relevant difference between the doses in the PTV and OARs were observed related to weight-loss in 0 T or 1.5 T fields. Variable sinus filling caused greater dosimetric differences near the walls of the sinus for plans optimised with a full cavity in 1.5 T, indicating that optimising with an empty sinus makes the plan more robust to changes in filling. These findings indicate that current off-line strategies for adaptive planning for H&N patients are also valid on an MR-linac, if care is taken with sinus filling.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Pérdida de Peso , Adulto , Anciano , Femenino , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Persona de Mediana Edad , Radiometría/métodos , Dosificación Radioterapéutica
19.
Med Phys ; 44(11): 5667-5671, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28869651

RESUMEN

PURPOSE: The 1.5 T Elekta MR-Linac, due to the construction of the system will have a maximum radiation field size in the superior-inferior patient direction of 22 cm at isocentre. The field size may impact on the patient groups which can be treated on the system. This technical note aims to address the question of which treatment sites will be affected by field size limitations on the MR-Linac. METHODS: Using historical data for 11 595 cases over 2 yr treated at the authors' institution, the proportion of plans that would fit the MR-Linac's field size was determined for eleven patient groups. In addition, cervix plans were analyzed to determine the length of the two Clinical Target Volumes (CTVs) and any overlap between them. RESULTS: With a 1 cm margin to allow for online plan adaption, 80% of all plans would be suitable for the MR-Linac due to the field size. This percentage increases to 100% for smaller tumor volumes such as prostate and brain. However, for cervix and three dose-level head and neck plans the percentage becomes 61% and 66%, respectively. CONCLUSION: The maximum radiation field size of the MR-Linac in the superior-inferior patient direction is 22 cm. With a 1 cm margin approximately 80% of all plans would be suitable for the MR-Linac with the available field size, decreasing to 61% for larger tumor volumes. For cervix patients this may motivate investigations into treating each CTV with a separate isocentre, allowing for careful control of matching fields.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Aceleradores de Partículas , Selección de Paciente , Femenino , Humanos , Relación Señal-Ruido , Neoplasias del Cuello Uterino/diagnóstico por imagen
20.
Radiother Oncol ; 122(2): 229-235, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27497803

RESUMEN

BACKGROUND AND PURPOSE: To assess the accuracy of gross tumour volume (GTV) delineation for head and neck squamous cell carcinoma (HNSCC) using a diagnostic position MRI (MRI-D) deformably registered to the planning CT (pCT), by comparison with a dedicated planning position MRI (MRI-RT). MATERIAL AND METHODS: Fourteen patients with HNSCC underwent a T1-weighted MRI-D and MRI-RT. A reference GTV was defined as that delineated on MRI-RT rigidly registered to pCT. GTVs were delineated on: MRI-D and then registered to pCT by deformable image registration over the whole image (DIR-whole); MRI-D and then registered to pCT with rigid registration over a region of interest defined as GTV+3cm (Rigid-ROI); and on the pCT alone. These were compared using positional metrics to the reference. RESULTS: GTVs delineated on MRI-D followed by DIR-whole were significantly more accurate than those delineated on CT alone. The mean Dice Similarity Coefficient was 0.6 and 0.72 for pCT and DIR-whole respectively. Use of MRI-D with Rigid-ROI provided no advantage over CT-only delineation. CONCLUSIONS: Contouring on MRI-RT rigidly registered to pCT should be considered as the gold standard for HNSCC. In radiotherapy centres lacking a dedicated MRI-RT, the use of an MRI-D with DIR-whole offers a significant advantage for the accuracy of GTV delineation over contouring on pCT alone.


Asunto(s)
Carcinoma de Células Escamosas/radioterapia , Neoplasias de Cabeza y Cuello/radioterapia , Imagen por Resonancia Magnética/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Carcinoma de Células Escamosas/diagnóstico por imagen , Femenino , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Dosificación Radioterapéutica , Carcinoma de Células Escamosas de Cabeza y Cuello
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...