Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 631(8020): 378-385, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961292

RESUMEN

The execution of goal-oriented behaviours requires a spatially coherent alignment between sensory and motor maps. The current model for sensorimotor transformation in the superior colliculus relies on the topographic mapping of static spatial receptive fields onto movement endpoints1-6. Here, to experimentally assess the validity of this canonical static model of alignment, we dissected the visuo-motor network in the superior colliculus and performed in vivo intracellular and extracellular recordings across layers, in restrained and unrestrained conditions, to assess both the motor and the visual tuning of individual motor and premotor neurons. We found that collicular motor units have poorly defined visual static spatial receptive fields and respond instead to kinetic visual features, revealing the existence of a direct alignment in vectorial space between sensory and movement vectors, rather than between spatial receptive fields and movement endpoints as canonically hypothesized. We show that a neural network built according to these kinetic alignment principles is ideally placed to sustain ethological behaviours such as the rapid interception of moving and static targets. These findings reveal a novel dimension of the sensorimotor alignment process. By extending the alignment from the static to the kinetic domain this work provides a novel conceptual framework for understanding the nature of sensorimotor convergence and its relevance in guiding goal-directed behaviours.


Asunto(s)
Modelos Neurológicos , Movimiento , Colículos Superiores , Percepción Visual , Animales , Femenino , Masculino , Objetivos , Cinética , Neuronas Motoras/fisiología , Movimiento/fisiología , Red Nerviosa/citología , Red Nerviosa/fisiología , Estimulación Luminosa , Desempeño Psicomotor/fisiología , Reproducibilidad de los Resultados , Colículos Superiores/citología , Colículos Superiores/fisiología , Percepción Visual/fisiología
2.
Elife ; 122023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37921437

RESUMEN

Transsynaptic viral vectors provide means to gain genetic access to neurons based on synaptic connectivity and are essential tools for the dissection of neural circuit function. Among them, the retrograde monosynaptic ΔG-Rabies has been widely used in neuroscience research. A recently developed engineered version of the ΔG-Rabies, the non-toxic self-inactivating (SiR) virus, allows the long term genetic manipulation of neural circuits. However, the high mutational rate of the rabies virus poses a risk that mutations targeting the key genetic regulatory element in the SiR genome could emerge and revert it to a canonical ΔG-Rabies. Such revertant mutations have recently been identified in a SiR batch. To address the origin, incidence and relevance of these mutations, we investigated the genomic stability of SiR in vitro and in vivo. We found that "revertant" mutations are rare and accumulate only when SiR is extensively amplified in vitro, particularly in suboptimal production cell lines that have insufficient levels of TEV protease activity. Moreover, we confirmed that SiR-CRE, unlike canonical ΔG-Rab-CRE or revertant-SiR-CRE, is non-toxic and that revertant mutations do not emerge in vivo during long-term experiments.


Asunto(s)
Virus de la Rabia , Rabia , Humanos , Virus de la Rabia/genética , Mutación , Línea Celular , Inestabilidad Genómica
3.
Nat Methods ; 20(4): 580-589, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36864202

RESUMEN

An exciting frontier in circuit neuroscience lies at the intersection between neural network mapping and single-cell genomics. Monosynaptic rabies viruses provide a promising platform for the merger of circuit mapping methods with -omics approaches. However, three key limitations have hindered the extraction of physiologically meaningful gene expression profiles from rabies-mapped circuits: inherent viral cytotoxicity, high viral immunogenicity and virus-induced alteration of cellular transcriptional regulation. These factors alter the transcriptional and translational profiles of infected neurons and their neighboring cells. To overcome these limitations we applied a self-inactivating genomic modification to the less immunogenic rabies strain, CVS-N2c, to generate a self-inactivating CVS-N2c rabies virus (SiR-N2c). SiR-N2c not only eliminates undesired cytotoxic effects but also substantially reduces gene expression alterations in infected neurons and dampens the recruitment of innate and acquired immune responses, thus enabling open-ended interventions on neural networks and their genetic characterization using single-cell genomic approaches.


Asunto(s)
Virus de la Rabia , Rabia , Humanos , Virus de la Rabia/genética , Glicoproteínas , Transcriptoma , Antígenos Virales
4.
Mol Metab ; 66: 101604, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36184065

RESUMEN

OBJECTIVE: Insulin-like peptide 5 (INSL5) signalling, through its cognate receptor relaxin/insulin-like family peptide receptor 4 (RXFP4), has been reported to be orexigenic, and the high fat diet (HFD) preference observed in wildtype mice is altered in Rxfp4 knock-out mice. In this study, we used a new Rxfp4-Cre mouse model to investigate the mechanisms underlying these observations. METHODS: We generated transgenic Rxfp4-Cre mice and investigated central expression of Rxfp4 by RT-qPCR, RNAscope and intraparenchymal infusion of INSL5. Rxfp4-expressing cells were chemogenetically manipulated in global Cre-reporter mice using designer receptors exclusively activated by designer drugs (DREADDs) or after stereotactic injection of a Cre-dependent AAV-DIO-Dq-DREADD targeting a population located in the ventromedial hypothalamus (RXFP4VMH). Food intake and feeding motivation were assessed in the presence and absence of a DREADD agonist. Rxfp4-expressing cells in the hypothalamus were characterised by single-cell RNA-sequencing (scRNAseq) and the connectivity of RXFP4VMH cells was investigated using viral tracing. RESULTS: Rxfp4-Cre mice displayed Cre-reporter expression in the hypothalamus. Active expression of Rxfp4 in the adult mouse brain was confirmed by RT-qPCR and RNAscope. Functional receptor expression was supported by cyclic AMP-responses to INSL5 application in ex vivo brain slices and increased HFD and highly palatable liquid meal (HPM), but not chow, intake after intra-VMH INSL5 infusion. scRNAseq of hypothalamic RXFP4 neurons defined a cluster expressing VMH markers, alongside known appetite-modulating neuropeptide receptors (Mc4r, Cckar and Nmur2). Viral tracing demonstrated RXFP4VMH neural projections to nuclei implicated in hedonic feeding behaviour. Whole body chemogenetic inhibition (Di-DREADD) of Rxfp4-expressing cells, mimicking physiological INSL5-RXFP4 Gi-signalling, increased intake of the HFD and HPM, but not chow, whilst activation (Dq-DREADD), either at whole body level or specifically within the VMH, reduced HFD and HPM intake and motivation to work for the HPM. CONCLUSION: These findings identify RXFP4VMH neurons as regulators of food intake and preference, and hypothalamic RXFP4 signalling as a target for feeding behaviour manipulation.


Asunto(s)
Ingestión de Alimentos , Neuronas , Receptores Acoplados a Proteínas G , Animales , Ratones , Hipotálamo/citología , Hipotálamo/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
5.
Nat Biotechnol ; 36(2): 156-159, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29251727

RESUMEN

We develop an approach to tag proteomes synthesized by specific cell types in dissociated cortex, brain slices, and the brains of live mice. By viral-mediated expression of an orthogonal pyrrolysyl-tRNA synthetase-tRNAXXX pair in a cell type of interest and providing a non-canonical amino acid with a chemical handle, we selectively label neuronal or glial proteomes. The method enables the identification of proteins from spatially and genetically defined regions of the brain.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Encéfalo/metabolismo , Neuronas/metabolismo , Proteoma/genética , Aminoácidos , Animales , Regulación Enzimológica de la Expresión Génica/genética , Ratones , Neuroglía/metabolismo , ARN de Transferencia/genética
7.
Cell ; 170(2): 382-392.e14, 2017 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-28689641

RESUMEN

Neural networks are emerging as the fundamental computational unit of the brain and it is becoming progressively clearer that network dysfunction is at the core of a number of psychiatric and neurodegenerative disorders. Yet, our ability to target specific networks for functional or genetic manipulations remains limited. Monosynaptically restricted rabies virus facilitates the anatomical investigation of neural circuits. However, the inherent cytotoxicity of the rabies largely prevents its implementation in long-term functional studies and the genetic manipulation of neural networks. To overcome this limitation, we developed a self-inactivating ΔG-rabies virus (SiR) that transcriptionally disappears from the infected neurons while leaving permanent genetic access to the traced network. SiR provides a virtually unlimited temporal window for the study of network dynamics and for the genetic and functional manipulation of neural circuits in vivo without adverse effects on neuronal physiology and circuit function.


Asunto(s)
Vías Nerviosas , Neurobiología/métodos , Virus de la Rabia/genética , Animales , Ratones , Neuronas/metabolismo , Sinapsis
8.
Cereb Cortex ; 27(6): 3378-3396, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27600842

RESUMEN

The T-box containing Tbr2 gene encodes for a transcription factor essential for the specification of the intermediate neural progenitors (INPs) originating the excitatory neurons of the cerebral cortex. However, its overall mechanism of action, direct target genes and cofactors remain unknown. Herein, we carried out global gene expression profiling combined with genome-wide binding site identification to determine the molecular pathways regulated by TBR2 in INPs. This analysis led to the identification of novel protein-protein interactions that control multiple features of INPs including cell-type identity, morphology, proliferation and migration dynamics. In particular, NEUROG2 and JMJD3 were found to associate with TBR2 revealing unexplored TBR2-dependent mechanisms. These interactions can explain, at least in part, the role of this transcription factor in the implementation of the molecular program controlling developmental milestones during corticogenesis. These data identify TBR2 as a major determinant of the INP-specific traits by regulating both genetic and epigenetic pathways.


Asunto(s)
Diferenciación Celular/genética , Corteza Cerebral/citología , Regulación del Desarrollo de la Expresión Génica/genética , Células-Madre Neurales/fisiología , Neuronas/fisiología , Proteínas de Dominio T Box/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclo Celular/genética , Movimiento Celular/genética , Polaridad Celular/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/genética , Hipocampo/citología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
9.
Cell Stem Cell ; 17(6): 719-734, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26526726

RESUMEN

Transplantation of GABAergic interneurons (INs) can provide long-term functional benefits in animal models of epilepsy and other neurological disorders. Whereas GABAergic INs can be differentiated from embryonic stem cells, alternative sources of GABAergic INs may be more tractable for disease modeling and transplantation. We identified five factors (Foxg1, Sox2, Ascl1, Dlx5, and Lhx6) that convert mouse fibroblasts into induced GABAergic INs (iGABA-INs) possessing molecular signatures of telencephalic INs. Factor overexpression activates transcriptional networks required for GABAergic fate specification. iGABA-INs display progressively maturing firing patterns comparable to cortical INs, form functional synapses, and release GABA. Importantly, iGABA-INs survive and mature upon being grafted into mouse hippocampus. Optogenetic stimulation demonstrated functional integration of grafted iGABA-INs into host circuitry, triggering inhibition of host granule neuron activity. These five factors also converted human cells into functional GABAergic INs. These properties suggest that iGABA-INs have potential for disease modeling and cell-based therapeutic approaches to neurological disorders.


Asunto(s)
Reprogramación Celular , Fibroblastos/citología , Interneuronas/citología , Prosencéfalo/citología , Ácido gamma-Aminobutírico/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Linaje de la Célula , Técnicas de Cocultivo , Células Madre Embrionarias/citología , Factores de Transcripción Forkhead/metabolismo , Perfilación de la Expresión Génica , Hipocampo/citología , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Factores de Transcripción SOXB1/metabolismo , Sinapsis/metabolismo , Telencéfalo/citología , Transcripción Genética
10.
Proc Natl Acad Sci U S A ; 111(36): E3805-14, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25157152

RESUMEN

Genetically encoded fluorescent proteins and immunostaining are widely used to detect cellular and subcellular structures in fixed biological samples. However, for thick or whole-mount tissue, each approach suffers from limitations, including limited spectral flexibility and lower signal or slow speed, poor penetration, and high background labeling, respectively. We have overcome these limitations by using transgenically expressed chemical tags for rapid, even, high-signal and low-background labeling of thick biological tissues. We first construct a platform of widely applicable transgenic Drosophila reporter lines, demonstrating that chemical labeling can accelerate staining of whole-mount fly brains by a factor of 100. Using viral vectors to deliver chemical tags into the mouse brain, we then demonstrate that this labeling strategy works well in mice. Thus this tag-based approach drastically improves the speed and specificity of labeling genetically marked cells in intact and/or thick biological samples.


Asunto(s)
Encéfalo/metabolismo , Colorantes Fluorescentes/metabolismo , Coloración y Etiquetado/métodos , Animales , Drosophila , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA