Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 114(17): 4519-4524, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28396398

RESUMEN

Theta oscillations (4-12 Hz) are thought to provide a common temporal reference for the exchange of information among distant brain networks. On the other hand, faster gamma-frequency oscillations (30-160 Hz) nested within theta cycles are believed to underlie local information processing. Whether oscillatory coupling between global and local oscillations, as showcased by theta-gamma coupling, is a general coding mechanism remains unknown. Here, we investigated two different patterns of oscillatory network activity, theta and respiration-induced network rhythms, in four brain regions of freely moving mice: olfactory bulb (OB), prelimbic cortex (PLC), parietal cortex (PAC), and dorsal hippocampus [cornu ammonis 1 (CA1)]. We report differential state- and region-specific coupling between the slow large-scale rhythms and superimposed fast oscillations. During awake immobility, all four regions displayed a respiration-entrained rhythm (RR) with decreasing power from OB to CA1, which coupled exclusively to the 80- to 120-Hz gamma subband (γ2). During exploration, when theta activity was prevailing, OB and PLC still showed exclusive coupling of RR with γ2 and no theta-gamma coupling, whereas PAC and CA1 switched to selective coupling of theta with 40- to 80-Hz (γ1) and 120- to 160-Hz (γ3) gamma subbands. Our data illustrate a strong, specific interaction between neuronal activity patterns and respiration. Moreover, our results suggest that the coupling between slow and fast oscillations is a general brain mechanism not limited to the theta rhythm.

2.
Cell Transplant ; 25(1): 125-39, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25812176

RESUMEN

Cell transplantation might be one means to improve motor, sensory, or autonomic recovery after traumatic spinal cord injury (SCI). Among the different cell types evaluated to date, bone marrow stromal cells (BMSCs) have received considerable interest due to their potential neuroprotective properties. However, uncertainty exists whether the efficacy of BMSCs after intraspinal transplantation justifies an invasive procedure. In the present study, we analyzed the effect of syngeneic BMSC transplantation following a moderate to severe rat spinal cord injury. Adult Fischer 344 rats underwent a T9 contusion injury (200 kDy) followed by grafting of GFP-expressing BMSCs 3 days postinjury. Animals receiving a contusion injury without cellular grafts or an injury followed by grafts of syngeneic GFP-expressing fibroblasts served as control. Eight weeks posttransplantation, BMSC-grafted animals showed only a minor effect in one measure of sensorimotor recovery, no significant differences in tissue sparing, and no changes in the recovery of bladder function compared to both control groups in urodynamic measurements. Both cell types survived in the lesion site with fibroblasts displaying a larger graft volume. Thus, contrary to some reports using allogeneic or xenogeneic transplants, subacute intraparenchymal grafting of syngeneic BMSCs has only a minor effect on functional recovery.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/terapia , Animales , Proliferación Celular , Supervivencia Celular , Femenino , Fibroblastos/citología , Ratas Endogámicas F344 , Recuperación de la Función , Traumatismos de la Médula Espinal/patología , Trasplante Isogénico , Vejiga Urinaria/patología , Vejiga Urinaria/fisiopatología , Urodinámica
3.
PLoS One ; 9(7): e102896, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25050623

RESUMEN

After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis) in the brain (subventricular zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC) or cervical spinal cord might represent a structural correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe contusion injuries (200 kDyn) of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU) to label dividing cells. Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was not present in non-neurogenic regions (MC, CC, and cervical spinal cord) and unaltered in neurogenic regions (dentate gyrus and SVZ) of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote from the injury site, however, is unlikely to contribute to functional improvement.


Asunto(s)
Neuroglía/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/fisiopatología , Animales , Encéfalo/fisiopatología , Proliferación Celular , Vértebras Cervicales , Contusiones/complicaciones , Proteína Doblecortina , Actividad Motora/fisiología , Regeneración Nerviosa/fisiología , Neurogénesis , Ratas Endogámicas F344 , Traumatismos de la Médula Espinal/etiología , Vértebras Torácicas , Factores de Tiempo
4.
J Neurosci ; 34(17): 5949-64, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24760854

RESUMEN

Different types of network oscillations occur in different behavioral, cognitive, or vigilance states. The rodent hippocampus expresses prominent θ oscillations at frequencies between 4 and 12 Hz, which are superimposed by phase-coupled γ oscillations (30-100 Hz). These patterns entrain multineuronal activity over large distances and have been implicated in sensory information processing and memory formation. Here we report a new type of oscillation at near-θ frequencies (2-4 Hz) in the hippocampus of urethane-anesthetized mice. The rhythm is highly coherent with nasal respiration and with rhythmic field potentials in the olfactory bulb: hence, we called it hippocampal respiration-induced oscillations. Despite the similarity in frequency range, several features distinguish this pattern from locally generated θ oscillations: hippocampal respiration-induced oscillations have a unique laminar amplitude profile, are resistant to atropine, couple differently to γ oscillations, and are abolished when nasal airflow is bypassed by tracheotomy. Hippocampal neurons are entrained by both the respiration-induced rhythm and concurrent θ oscillations, suggesting a direct interaction between endogenous activity in the hippocampus and nasal respiratory inputs. Our results demonstrate that nasal respiration strongly modulates hippocampal network activity in mice, providing a long-range synchronizing signal between olfactory and hippocampal networks.


Asunto(s)
Ondas Encefálicas/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Respiración , Animales , Femenino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA