Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
J Hazard Mater ; 470: 134229, 2024 May 15.
Article En | MEDLINE | ID: mdl-38581875

Total alpha and beta activities and Rn-222 concentrations were determined in water from different sections of seven aqueducts belonging to the water supply system of Campania region (Italy), known worldwide for its volcanism. Statistical analysis was performed on data to account for their variability across the aqueduct sections, and results were discussed considering the geology of reservoirs, the potential mixing processes occurring along the pipe network, the building/constituting materials of the aqueduct sections, and the integrity of the infrastructure. Guidelines proposed by Italian and international regulation entities were considered to determine if total alpha and beta activities and Rn-222 concentrations found at the taps of the different aqueducts should be considered detrimental to public health. Based on a deterministic and a stochastic approach, a health risk assessment was also tested for Rn-222, assuming direct ingestion and showering as potential exposure pathways. Results showed that applying guidelines returned an absence of hazard, whereas risk assessment returned a high probability of exposure to unacceptable Rn-222 doses for some aqueducts. Beyond the usefulness of obtained results to plan actions to improve the safety of drinking water in Campania, our outcomes represent a warning for bodies dealing with public health at any level: the use of guidelines can bring an underestimation of the risks exerted by the exposure to Rn-222 on human health. Further, using a probabilistic approach in risk assessment accounting for uncertainty can favor risk forecasts based on more "realistic" scenarios.


Drinking Water , Water Supply , Italy , Humans , Risk Assessment , Drinking Water/analysis , Water Pollutants, Radioactive/analysis , Volcanic Eruptions
2.
Sci Total Environ ; 932: 172556, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38679085

This study reviewed scientific literature on inhalation exposure to heavy metals (HMs) in various indoor and outdoor environments and related carcinogenic and non-carcinogenic risk. A systematic search in Web of Science, Scopus, PubMed, Embase, and Medline databases yielded 712 results and 43 articles met the requirements of the Population, Exposure, Comparator, and Outcomes (PECO) criteria. Results revealed that HM concentrations in most households exceeded the World Health Organization (WHO) guideline values, indicating moderate pollution and dominant anthropogenic emission sources of HMs. In the analyzed schools, universities, and offices low to moderate levels of air pollution with HMs were revealed, while in commercial environments high levels of air pollution were stated. The non-carcinogenic risk due to inhalation HM exposure exceeded the acceptable level of 1 in households, cafes, hospitals, restaurants, and metros. The carcinogenic risk for As and Cr in households, for Cd, Cr, Ni, As, and Co in educational environments, for Pb, Cd, Cr, and Co in offices and commercial environments, and for Ni in metros exceeded the acceptable level of 1 × 10-4. Carcinogenic risk was revealed to be higher indoors than outdoors. This review advocates for fast and effective actions to reduce HM exposure for safer breathing.


Air Pollutants , Inhalation Exposure , Metals, Heavy , Metals, Heavy/analysis , Humans , Inhalation Exposure/statistics & numerical data , Air Pollutants/analysis , Risk Assessment , Air Pollution, Indoor/statistics & numerical data , Air Pollution, Indoor/adverse effects , Air Pollution/statistics & numerical data
3.
Environ Geochem Health ; 45(7): 4795-4815, 2023 Jul.
Article En | MEDLINE | ID: mdl-36941446

The environmental geochemical characterization of mineralized areas prior to mining does not receive adequate attention. This study shows trace element distribution in soils of two unexploited porphyry copper deposits located in Darreh-Zereshk and Ali-Abad in central Iran. The study was carried out using a compositional data analysis (CoDa) approach and combination of multivariate statistics and clustering techniques, which made it possible to identify the geochemical associations representing the different areas of the mineral deposits. The results of the chemical analyses, performed by ICP-MS, revealed high concentrations of those elements typically associated with porphyry deposits (As, Co, Cu, Mo, Ni, Pb, and Zn). The typical zonal pattern with an anomaly of Cu in central parts of the system and the prevalence of epithermal elements (Ag, Cd, Pb, and Zn) toward the peripheral propylitic alteration zone were recognized. The XRD analysis of selected soil samples allowed us to determine the distribution of elements within the different carrier minerals. Afterward, geochemical speciation patterns were investigated by a four-step sequential extraction procedure based on BCR protocol. The residual fraction consisting of primary resistant minerals was found to be the main host for As (73-93.4%), Cr (65.1-79.6%), Cu (54.3-81.4%), Ni (58.9-80.6%), V (75.9-88%), and Zn (56.5-60.5%) in the studied soils. Even though these elements are not readily leachable, their behavior and distribution could be largely affected by the mining operation and consequent changes in the physicochemical properties of the soil. The soluble-exchangeable phase was only less than 15% of the total extractions for all elements, except for Cd. With respect to the mobility factor (MF), Cd was the most mobile element followed by Sb and Pb. The measured risk assessment code (RAC) presented the following risk order: Cd > Sb > Ni > Co > Pb > Cr > As > Zn > Cu > V. This study reveals that the acquisition of pre-mining geo-environmental data of trace elements is very important to establish pre-mining backgrounds and baselines for evaluating post-mining or post-reclamation geochemical signatures.


Metals, Heavy , Soil Pollutants , Trace Elements , Metals, Heavy/analysis , Soil/chemistry , Cadmium/analysis , Copper/analysis , Lead/analysis , Trace Elements/analysis , Chemical Fractionation , Environmental Monitoring/methods , Soil Pollutants/analysis , Risk Assessment
4.
Chemosphere ; 313: 137297, 2023 Feb.
Article En | MEDLINE | ID: mdl-36410516

Campi Flegrei is an active volcanic field in south Italy where the potentially toxic elements (PTEs) are of growing concern because the intensive anthropogenic and volcanic activities might pose adverse human health effects. In this article, 394 topsoils (0-15 cm) are collected for instrumental analysis of the <2 mm fraction. The geochemical maps indicate that higher concentrations of Pb, Zn, Cd, Cr, Hg, Ni and Sb are related to the urban area, but greater levels of As, Tl, Co, Cu, Se and V are observed in the other parts. A robust principal component analysis detected: (1) the Pb-Zn-Hg-Cd-Sb-Cr-Ni association that probably highlights anthropogenic activities such as heavy traffic load and fossil fuel combustion in the urbanized area; (2) the Al-Fe-Mn-Ti-Tl-V-Co-As-U-Th association that mostly reveals the contribution of pyroclastic deposits; and (3) the Na-K-B association that feasibly indicates the weathering degree. The probabilistic health risk modeling for the children under 6 years old shows negligible Pb and Zn non-carcinogenic risk and unexpected Pb carcinogenic risk for exposure through soil ingestion. However, for the inhalation pathway, the children aged <1 year old have the highest chance (90%) of acceptable (i.e. between 1E-6 and 1E-4) Pb carcinogenic health risk. This should not be overlooked because Naples is under high environmental pressure and previous studies reported the increased Pb and Zn quantities in soil over a 26-year timespan. Overall, the results of geostatistical interpolation, compositional data analysis and probabilistic health risk modeling potentially uncover the link between soil geochemistry and human health.


Mercury , Metals, Heavy , Soil Pollutants , Child , Humans , Child, Preschool , Infant , Metals, Heavy/analysis , Environmental Monitoring/methods , Soil , Cadmium/analysis , Lead/analysis , Soil Pollutants/analysis , Mercury/analysis , Carcinogens/analysis , Italy , Risk Assessment/methods
5.
Sci Total Environ ; 864: 161032, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36549536

In this study, we investigated the presence, abundance, and chemical nature of microplastics (MPs) in the freshwater fish gastrointestinal tract in the South of Italy, and evaluated the possible correlation between MPs and environmental pollutants. Fifty specimens belonging to five species (Scardinius erythrophthalmus, Barbus barbus, Rutilus rubilio, Leuciscus cephalus, Salmo trutta), from twenty sites were collected. MPs chemical feature was identified by means of Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) and Raman microscopy. MPs were represented by 34.86 % fragments, film, and foam (all together MPs) and 65.14 % by fibers (MFs). The mean number of MPs/MFs per fish ranged from 6.25 ± 4.35 in R. rubilio and 2.26 ± 1.94 in B. barbus. The highest number of MPs/MFs per g of GIT was found in R. rubilio (9.07 ± 9.66), and the lowest in S. erythrophthalmus (0.75 ± 0.53). The highest number of MPs/MFs per fish species was found in L. cephalus (16), and the lowest in S. erythrophthalmus (4). Black predominated in every type of plastic debris identified, followed by blue and white, respectively for MFs and MPs. Polyethylene (PE), polyethylene terephthalate (PET), polystyrene (PS), and polypropylene (PP), were the main plastic polymers found. At fish sampling sites, comparing concentrations in soils of potentially toxic elements and persistent organic pollutants with the number of MPs/MFs in fish, a significant correlation was noted with polychlorinated biphenyls (PCBs) and, in particular, with PCB 105, PCB 118, PCB 156, PCB 157, and PCB 167. A strong correlation was also observed with all types of polycyclic aromatic hydrocarbon (PAHs) particularly with benzo(ghi)perylene, dibenz(a,h)anthracene, benzo(b)fluoranthene, benz(a)anthracene, benzo(a)pyrene, and pyrene. The results of this study would be useful to draft management and action plans, promote intervention plans aiming at removing threats to species and habitats, and address ways of renaturalization.


Environmental Pollutants , Water Pollutants, Chemical , Animals , Microplastics , Plastics/chemistry , Fresh Water , Fishes , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
6.
Environ Geochem Health ; 45(2): 275-297, 2023 Feb.
Article En | MEDLINE | ID: mdl-35014008

In 2017, a geochemical survey was carried out across the Commune of Santiago, a local administrative unit located at the center of the namesake capital city of Chile, and the concentration of a number of major and trace elements (53 in total) was determined on 121 topsoil samples. Multifractal IDW (MIDW) interpolation method was applied to raw data to generate geochemical baseline maps of 15 potential toxic elements (PTEs); the concentration-area (C-A) plot was applied to MIDW grids to highlight the fractal distribution of geochemical data. Data of PTEs were elaborated to statistically determine local geochemical baselines and to assess the spatial variation of the degree of soil contamination by means of a new method taking into account both the severity of contamination and its complexity. Afterwards, to discriminate the sources of PTEs in soils, a robust Principal Component Analysis (PCA) was applied to data expressed in isometric log-ratio (ilr) coordinates. Based on PCA results, a Sequential Binary Partition (SBP) was also defined and balances were determined to generate contrasts among those elements considered as proxies of specific contamination sources (Urban traffic, productive settlements, etc.). A risk assessment was finally completed to potentially relate contamination sources to their potential effect on public health in the long term. A probabilistic approach, based on Monte Carlo method, was deemed more appropriate to include uncertainty due to spatial variation of geochemical data across the study area. Results showed how the integrated use of multivariate statistics and compositional data analysis gave the authors the chance to both discriminate between main contamination processes characterizing the soil of Santiago and to observe the existence of secondary phenomena that are normally difficult to constrain. Furthermore, it was demonstrated how a probabilistic approach in risk assessment could offer a more reliable view of the complexity of the process considering uncertainty as an integral part of the results.


Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Environmental Monitoring/methods , Chile , Soil Pollutants/toxicity , Soil Pollutants/analysis , Soil/chemistry , Risk Assessment
7.
Toxics ; 10(8)2022 Jul 25.
Article En | MEDLINE | ID: mdl-35893849

The geochemical composition of bedrock is the key feature determining elemental concentrations in soil, followed by anthropogenic factors that have less impact. Concerning the latter, harmful effects on the trophic chain are increasingly affecting people living in and around urban areas. In the study area of the present survey, the municipalities of Cosenza and Rende (Calabria, southern Italy), topsoil were collected and analysed for 25 elements by inductively coupled plasma mass spectrometry (ICP-MS) in order to discriminate the different possible sources of elemental concentrations and define soil quality status. Statistical and geostatistical methods were applied to monitoring the concentrations of major oxides and minor elements, while the Self-Organizing Maps (SOM) algorithm was used for unsupervised grouping. Results show that seven clusters were identified-(I) Cr, Co, Fe, V, Ti, Al; (II) Ni, Na; (III) Y, Zr, Rb; (IV) Si, Mg, Ba; (V) Nb, Ce, La; (VI) Sr, P, Ca; (VII) As, Zn, Pb-according to soil elemental associations, which are controlled by chemical and mineralogical factors of the study area parent material and by soil-forming processes, but with some exceptions linked to anthropogenic input.

8.
Chemosphere ; 287(Pt 2): 132233, 2022 Jan.
Article En | MEDLINE | ID: mdl-34826924

An empirical method was applied to estimate the 222Rn fluxes distribution across the Campania region (Italy) by using both gamma-rays and U, Th, K concentrations in soils. As a first step, K, Th and U soil concentrations and 4 K, 238U and 232Th activity have been converted into their own specific activity to calculate the Terrestrial Gamma Dose Rate (TGDR). This latter has been then used to determine the 222Rn fluxes across the region. Regardless of the radiometric or geochemical origin, 222Rn fluxes reached, as expected, their maximum values in correspondence with the volcanic centres of Campania (Mt. Somma-Vesuvius, Phlegrean Fields, Mt. Roccamonfina). However, comparing the results obtained from the two different datasets, it was also possible to infer the existence of contributions to surficial 222Rn fluxes proceeding from both some underlying geological bodies and active seismogenic sources. In line with some national regulations, the 222Rn flux esteemed from gamma radiations was also used to assess the possible regional distribution of risk deriving from the indoor environmental exposure to 222Rn; results were compared with standardized incidence rates (SIRs) of lung cancer for an area on the south-western sector of Mt. Somma-Vesuvius showing a potential spatial relationship among flux data and SIRs.


Air Pollutants, Radioactive , Radiation Monitoring , Radon , Soil Pollutants, Radioactive , Air Pollutants, Radioactive/analysis , Gamma Rays , Italy , Radon/analysis , Soil Pollutants, Radioactive/analysis
9.
Chemosphere ; 274: 129955, 2021 Jul.
Article En | MEDLINE | ID: mdl-33979924

In the last decades, investigating geochemistry of sea sediments has been challenging in the eastern sector of Pozzuoli Bay, source of the metal(loid)s has been a matter of debate and the proposed origin of potentially toxic elements (PTEs) has been occasionally inconsistent. In this study, compositional data analysis (CoDA) was used because the results are independent of the measurement unit, the selected subgroup of elements and the order of chemicals in the dataset. The robust variant of principal component analysis (PCA) indicated that Hg, Cd, Cu, Pb and Zn were positively correlated with mud and organic matter in the sediments deposited in front of the former industrial site. Concentrations of these metals decrease along the cores and in the distal zone. Nevertheless, Al, As, V, Fe, Cr, Ni and sand form an association along the coast which strengthens with increasing distance from fumaroles in the proximal zone. It suggests that arsenic was mainly originated from the pyroclastic deposits of Campi Flegrei and some of the seepages with hydrothermal component, supported by low contribution of the variables in robust PCA of the sediments from distal zone. Therefore, this pioneering article suggests CoDA as a powerful tool for answering the long-lasting questions over sediment geochemistry in polluted areas.


Metals, Heavy , Water Pollutants, Chemical , Bays , Data Analysis , Environmental Monitoring , Geologic Sediments , Italy , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis
10.
Environ Res ; 182: 109076, 2020 03.
Article En | MEDLINE | ID: mdl-31901628

This study is the first attempt to evaluate occurrence, distribution and potential health impacts of As at a national scale in Italy. In various environmental matrices, As geochemical distribution was investigated and carcinogenic and non-carcinogenic risks were assessed with respect to different exposure routes and age groups. Both deterministic and probabilistic methods were used to determine the health risks. Geochemical mapping at a sub-continental scale provided a useful tool to spatially represent As concentration and the critical areas posing a health threat to inhabitants. The results show that significant As concentrations in tap water and soil (up to 27.20 µg/l and 62.20 mg/kg, respectively) are mainly governed by geological features. In the central parts of Italy, where alkaline volcanic materials and consequently high levels of As occur, the residents are prone to health issues. Daily exposure to As in tap water is unparalleled playing an important role in the potential cancer and non-cancer risks. The Incremental Lifetime Cancer Risk for skin cancer and also lung and bladder cancer associated with tap water ingestion interestingly shows that (i) almost 80% of the computed values fall above the internationally accepted benchmark value of 1 × 10-5; (ii) majority of the data exceed the acceptable risk proposed by most jurisdictions, such as that of Italian law (1 × 10-6). Further, geographical variation of health risk highlights high carcinogenic and non-carcinogenic risk associated with water ingestion for those living in the northern Alps (including the city of Trento) and the central and southern Italy (including the capital Rome and the cities of Napoli and Catanzaro). According to the results, application of the probabilistic method which considers variability and uncertainty is preferred to the deterministic approach for risk assessment. The sensitivity analysis showed that As concentration in drinking water and exposure duration are the factors with the greatest impact on the outcome of risk assessment (for all age groups). The results of the current study may be a good starting point for authorities to urgently decide about the needed policy actions in order to prevent the adverse health effects and to reduce the human health risk due to As exposure.


Arsenic , Neoplasms , Water Pollutants, Chemical , Adult , Age Factors , Aged , Aged, 80 and over , Arsenic/toxicity , Cities , Environmental Exposure , Humans , Italy , Middle Aged , Neoplasms/epidemiology , Risk Assessment , Rome , Water Pollutants, Chemical/toxicity , Young Adult
11.
J Hazard Mater ; 383: 121158, 2020 02 05.
Article En | MEDLINE | ID: mdl-31541950

The concentrations of polycyclic aromatic hydrocarbons (PAHs) in soils from Caserta provincial territory, southern Italy, were systematically investigated along with their correlations with soil properties and health risk. The concentrations of ∑16PAHs ranged from 10.0 to 4191 ng/g, with a median (1 st quartile, Q1; 3rd quartile, Q3) of 28.5 (17.5-65.0) ng/g; Four-ring PAHs were the most abundant and contributed an average of ∼50.2% of the ∑16PAHs. Significant differences in the spatial distributions of PAHs in soil were observed, with higher levels of PAH contamination found in Caserta city and the surrounding areas. According to the positive matrix factorization (PMF) model, three sources were identified: chemical production and metal smelting, vehicle emissions, and coal/biomass combustion. Soil total organic carbon was significantly correlated with the concentration of total PAHs and the concentrations of PAHs with three-, four-, and five-rings. In contrast, only the concentration of ∑4DBPs (dibenzo(a,e)pyrene, dibenzo(a,h)pyrene, dibenzo(a,i)pyrene, dibenzo(a,l)pyrene) was well correlated with population density. The soil mass inventory of ∑16PAHs was estimated to be 6.87 metric tons (geometric mean). The ecological risks posed by PAHs in the study are negligible; however, health risks of exposure to soil-borne PAHs were identified based on a probabilistic risk model.

12.
Sci Rep ; 9(1): 11522, 2019 08 08.
Article En | MEDLINE | ID: mdl-31395938

Native plant species were screened for their remediation potential for the removal of Polycyclic Aromatic Hydrocarbons (PAHs) contaminated soil of Bagnoli brownfield site (Southern Italy). Soils at this site contain all of the PAHs congeners at concentration levels well above the contamination threshold limits established by Italian environmental legislation for residential/recreational land use, which represent the remediation target. The concentration of 13 High Molecular Weight Polycyclic Aromatic Hydrocarbons in soil rhizosphere, plants roots and plants leaves was assessed in order to evaluate native plants suitability for a gentle remediation of the study area. Analysis of soil microorganisms are provides important knowledge about bioremediation approach. Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria are the main phyla of bacteria observed in polluted soil. Functional metagenomics showed changes in dioxygenases, laccase, protocatechuate, and benzoate-degrading enzyme genes. Indolacetic acid production, siderophores release, exopolysaccharides production and ammonia production are the key for the selection of the rhizosphere bacterial population. Our data demonstrated that the natural plant-bacteria partnership is the best strategy for the remediation of a PAHs-contaminated soil.


Environmental Restoration and Remediation , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Genes, Plant , Italy , Plant Leaves/metabolism , Plant Roots/metabolism
13.
Data Brief ; 25: 103957, 2019 Aug.
Article En | MEDLINE | ID: mdl-31193959

This article offers statistical analyses of trace elements (TEs) in soils and plants through a Pearson correlation matrix. The main objectives were the assessment of soil TEs sources and the evaluation of native plant response to physical and chemical characteristics of a TEs contaminated soil. Data were collected from Bagnoli brownfield site (Southern Italy). Interpretation of the data, can be found in "Identification of native-metal tolerant plant species in-situ: environmental implications and functional traits" [1]. The correlations in the matrix are based on over 76 samples and 31 site-specific environmental variables.

14.
Sci Total Environ ; 674: 159-170, 2019 Jul 15.
Article En | MEDLINE | ID: mdl-31004892

This study comprehensively interprets the contamination status of organochlorine pesticides (OCPs) in the soils from Benevento provincial territory, southern Italy, and its implications for environmental health by means of a systematic grid sampling method and geostatistics. The total concentrations of OCPs in the soils ranged from 0.058 to 16.9 ng/g, with a geometric mean (GM) of 0.72 ng/g and an arithmetic mean (AM) of 1.71 ng/g. The levels of OCPs were dominated by p,p'-DDE, p,p'-DDD, HCB, contributing together to 73.5% of the total OCPs. The higher levels of HCB, DDTs, and HCHs found in southwestern, central and east Benevento provincial territory, all occurring adjacent to landfill sites. The residues of OCPs in soil are largely ascribed to their historical use. The OCP inventories in soils of Benevento provincial territory ranged from 0.13 to 4.84 metric tons, with GM = 0.42 metric tons and AM = 0.44 metric tons. The soil is likely to be a sink for DDTs under the influence of regional air transport from pollution hotspots and has the potential to release other chemicals with a high vapor pressure, e.g., HCB, HCHs, and α-Endosulfan. And the mean level of the air-soil exchange flux of HCB, HCHs, and DDTs is estimated to be -1.59, -0.72, and 0.10 ng/m2/day respectively. The potential ecological and human health risks caused by OCPs in the soils are deemed essentially negligible in Benevento provincial territory.

15.
Sci Total Environ ; 650(Pt 2): 3156-3167, 2019 Feb 10.
Article En | MEDLINE | ID: mdl-30373092

A study was undertaken to identify suitable native plants for the phytoremediation of the second largest integrated steelworks in Italy (Bagnoli brownfield site). A phytoecological survey allowed us to identify 139 plant taxa belonging to 58 different families. The most represented families were in the decreasing order Poaceae > Fabaceae > Asteraceae > Apiaceae. The biological spectrum showed a predominance of Therophytes > Hemycriptophytes > Phanerophyte. Seventy-six sites were selected on the presence of colonist's plants and vegetation assemblage patterns. At each site, roots and leaves of the dominant plant and rhizosphere soils were sampled. Total content of metal(loid)s in soils and plant parts were determined. Agronomic soil parameters were studied. Anthropogenic sourced metal(loid)s were discriminated from geochemical ones, and plant metal(loid) accumulation and translocation efficiency were evaluated. The role of many native plant species in terms of TEs phytomanagement strategy was recognizable inside the investigated area. According to this survey of structural plant diversity, several combinations between plants and microorganisms are being further investigated to identify relevant biological system for the phytomanagement of this contaminated area.


Biodiversity , Environmental Restoration and Remediation , Magnoliopsida/physiology , Metals/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Italy , Magnoliopsida/growth & development
16.
Environ Sci Pollut Res Int ; 25(26): 26361-26382, 2018 Sep.
Article En | MEDLINE | ID: mdl-29981022

Organochlorine pesticides (OCPs) are synthetic chemicals commonly used in agricultural activities to kill pests and are persistent organic pollutants (POPs). They can be detected in different environmental media, but soil is considered an important reservoir due to its retention capacity. Many different types of OCPs exist, which can have different origins and pathways in the environment. It is therefore important to study their distribution and behaviour in the environment, starting to build a picture of the potential human health risk in different contexts. This study aimed at investigating the regional distribution, possible sources and contamination levels of 24 OCP compounds in urban and rural soils from central and southern Italy. One hundred and forty-eight topsoil samples (0-20 cm top layer) from 78 urban and 70 rural areas in 11 administrative regions were collected and analysed by gas chromatography-electron capture detector (GC-ECD). Total OCP residues in soils ranged from nd (no detected) to 1043 ng/g with a mean of 29.91 ng/g and from nd to 1914 ng/g with a mean of 60.16 ng/g in urban and rural area, respectively. Endosulfan was the prevailing OCP in urban areas, followed by DDTs, Drins, Methoxychlor, HCHs, Chlordane-related compounds and HCB. In rural areas, the order of concentrations was Drins > DDTs > Methoxychlor > Endosulfans > HCHs > Chlordanes > HCB. Diagnostic ratios and robust multivariate analyses revealed that DDT in soils could be related to historical application, whilst (illegal) use of technical DDT or dicofol may still occur in some urban areas. HCH residues could be related to both historical use and recent application, whilst there was evidence that modest (yet significant) application of commercial technical HCH may still be happening in urban areas. Drins and Chlordane compounds appeared to be mostly related to historical application, whilst Endosulfan presented a complex mix of results, indicating mainly historical origin in rural areas as well as potential recent applications on urban areas. Contamination levels were quantified by Soil Quality Index (SoQI), identifying high levels in rural areas of Campania and Apulia, possibly due to the intensive nature of some agricultural practices in those regions (e.g., vineyards and olive plantations). The results from this study (which is in progress in the remaining regions of Italy) will provide an invaluable baseline for OCP distribution in Italy and a powerful argument for follow-up studies in contaminated areas. It is also hoped that similar studies will eventually constitute enough evidence to push towards an institutional response for more adequate regulation as well as a full ratification of the Stockholm Convention.


Hydrocarbons, Chlorinated/analysis , Pesticide Residues/analysis , Soil Pollutants/analysis , Agriculture , Chlordan/analysis , Chromatography, Gas , Cities/statistics & numerical data , Endosulfan/analysis , Environmental Monitoring , Humans , Italy , Pesticides/analysis , Soil/chemistry
17.
Sci Total Environ ; 622-623: 1277-1293, 2018 May 01.
Article En | MEDLINE | ID: mdl-29890595

Agricultural soil (Ap-horizon, 0-20cm) samples were collected in Europe (33 countries, 5.6millionkm2) as part of the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) soil-mapping project. The GEMAS survey area includes diverse groups of soil parent materials with varying geological history, a wide range of climate zones, and landscapes. The soil data have been used to provide a general view of U and Th mobility at the continental scale, using aqua regia and MMI® extractions. The U-Th distribution pattern is closely related to the compositional variation of the geological bedrock on which the soil is developed and human impact on the environment has not concealed these genuine geochemical features. Results from both extraction methods (aqua regia and MMI®) used in this study support this general picture. Ternary plots of several soil parameters have been used to evaluate chemical weathering trends. In the aqua regia extraction, some relative Th enrichment-U loss is related to the influence of alkaline and schist bedrocks, due to weathering processes. Whereas U enrichment-Th loss characterizes soils developed on alkaline and mafic bedrock end-members on one hand and calcareous rock, with a concomitant Sc depletion (used as proxy for mafic lithologies), on the other hand. This reflects weathering processes sensu latu, and their role in U retention in related soils. Contrary to that, the large U enrichment relative to Th in the MMI® extraction and the absence of end-member parent material influence explaining the enrichment indicates that lithology is not the cause of such enrichment. Comparison of U and Th to the soil geological parent material evidenced i) higher capability of U to be weathered in soils and higher resistance of Th to weathering processes and its enrichment in soils; and, ii) the MMI® extraction results show a greater affinity of U than Th for the bearing phases like clays and organic matter. The comparison of geological units with U anomalies in agricultural soil at the country scale (France) enables better understanding of U sources in the surficial environment and can be a useful tool in risk assessments.

18.
Psychiatry Res ; 249: 311-317, 2017 Mar.
Article En | MEDLINE | ID: mdl-28152464

Arsenic, as a toxin, may be associated with higher mortality rates, although its relationship to suicide is not clear. Given this uncertainty, we evaluated associations between local arsenic concentrations in tapwater and mortality in regions of Italy, to test the hypothesis that both natural-cause and suicide death rates would be higher with greater trace concentrations of arsenic. Arsenic concentrations in drinking-water samples from 145 sites were assayed by mass spectrometry, and correlated with local rates of mortality due to suicide and natural causes between 1980 and 2011, using weighted, least-squares univariate and multivariate regression modeling. Arsenic concentrations averaged 0.969 (CI: 0.543-1.396) µg/L, well below an accepted safe maximum of 10µg/L. Arsenic levels were negatively associated with corresponding suicide rates, consistently among both men and women in all three study-decades, whereas mortality from natural causes increased with arsenic levels. Contrary to an hypothesized greater risk of suicide with higher concentrations of arsenic, we found a negative association, suggesting a possible protective effect, whereas mortality from natural causes was increased, in accord with known toxic effects of arsenic. The unexpected inverse association between arsenic and suicide requires further study.


Arsenic/adverse effects , Arsenic/analysis , Cause of Death , Drinking Water/adverse effects , Drinking Water/analysis , Suicide/psychology , Adult , Cause of Death/trends , Female , Humans , Italy/epidemiology , Male , Mortality/trends , Risk Factors , Suicide/trends , Water Supply/standards
19.
Environ Geochem Health ; 39(3): 531-548, 2017 Jun.
Article En | MEDLINE | ID: mdl-27142759

The geographical distribution of concentration values for harmful elements was determined in the Campania region, Italy. The study area consists of the drainage basin of the River Calore, a tributary of the river Volturno, the largest Southern Italian river. The results provide reliable analytical data allowing a quantitative assessment of the trace element pollution threat to the ecosystem and human health. Altogether 562 stream sediment samples were collected at a sampling density of 1 site per 5 km2. All samples were air-dried, sieved to <100 mesh fraction and analyzed for 37 elements after an aqua regia extraction by a combination of ICP-AES and ICP-MS. In addition to elemental analysis, gamma-ray spectrometry data were collected (a total of 562 measurements) using a hand-held Scintrex GRS-500 spectrometer. Statistical analyses were performed to show the single-element distribution and the distribution of elemental association factor scores resulting from R-mode factor analyses. Maps showing element distributions were made using GeoDAS and ArcGIS software. Our study showed that, despite evidence from concentrations of many elements for enrichment over natural background values, the spatial distribution of major and trace elements in Calore River basin is determined mostly by geogenic factors. The southwestern area of the basin highlighted an enrichment of many elements potentially harmful for human health and other living organisms (Al, Fe, K, Na, As, Cd, La, Pb, Th, Tl, U); however, these anomalies are due to the presence of pyroclastic and alkaline volcanic lithologies. Even where sedimentary lithologies occur, many harmful elements (Co, Cr, Mn, Ni) showed high concentration levels due to natural origins. Conversely, a strong heavy metal contamination (Pb, Zn, Cu, Sb, Ag, Au, Hg), due to an anthropogenic contribution, is highlighted in many areas characterized by the presence of road junctions, urban settlements and industrial areas. The enrichment factor of these elements is 3-4 times higher than the background values. The southwestern area of the basin is characterized by a moderate/high degree of contamination, just where the two busiest roads of the area run and the highest concentration of industries occurs.


Environmental Monitoring , Metals, Heavy/analysis , Rivers/chemistry , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Italy
20.
Environ Geochem Health ; 38(2): 619-37, 2016 Apr.
Article En | MEDLINE | ID: mdl-26164469

The results of a large geochemical study on various environmental media (soil, stream sediment, groundwater, surface water, lettuce and human hair) of the Sarno River basin, which is one of the most polluted areas in Italy, are presented. Further, it aims to deepen our understanding of the distribution of Pb and its isotope composition for the differentiation between natural and anthropogenic metal sources. Our results show the environmental media to be significantly enriched in Cr, Cu, Pb, Hg, Zn, and to a lesser extent in Sb, Cd and Ni compared to the natural local background variation. The numerous industrial activities (mainly tanneries) have caused environmental pollution especially Cr and Hg in soils and sediment samples. Such contamination is also evident in lettuce and in the hair of the resident population, which shows particularly high values for both Cr and Hg. The unusually high As, Be and Sn concentrations arise mostly from natural sources due to the volcanic nature of the investigated area. Lead isotope measurements indicate a trend suggesting mixing between two end-members, one of clear natural origin (geogenic) and another related to human activities (anthropogenic). Lead isotope results demonstrate that Pb in hair of inhabitants is similar to those in the local topsoil and that gasoline is one of the main, but not the only source of metal pollution. The most important exposure risks within the study area are associated with toxic elements levels in topsoil and stream sediment, and the ingestion of locally grown lettuce. The high concentrations of these elements in hair are a further confirmation of this exposure pathway.


Environmental Pollutants/analysis , Isotopes/chemistry , Lead/chemistry , Metals, Heavy/analysis , Groundwater/chemistry , Hair/chemistry , Humans , Isotopes/pharmacokinetics , Italy , Lactuca/chemistry , Metals, Heavy/pharmacokinetics
...