Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 69(17): 5096-5104, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33826316

RESUMEN

Natural and modified versions of the 5-enolpyruvylshikimate-3-phosphate synthase (epsps) gene have been used to confer tolerance to the broad-spectrum herbicide glyphosate in a variety of commercial crops. The most widely utilized trait was obtained from the Agrobacterium tumefaciens strain CP4 and has been commercialized in several glyphosate-tolerant crops. The EPSPS gene products are enzymes that have been divided into three classes based on sequence similarity, sensitivity to glyphosate, and steady-state catalytic parameters. Herein, we describe the informatics-guided identification and biochemical and structural characterization of a novel EPSPS from Streptomyces sviceus (DGT-28 EPSPS). The data suggest DGT-28 EPSPS and other closely related homologues exemplify a distinct new class (Class IV) of EPSPS enzymes that display intrinsic tolerance to high concentrations of glyphosate (Ki ≥ 5000 µM). We further demonstrate that dgt-28 epsps, when transformed into stable plants, provides robust (≥4× field rates) vegetative/reproductive herbicide tolerance and has utility in weed-control systems comparable to that of commercialized events.


Asunto(s)
Herbicidas , Streptomyces , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Glicina/análogos & derivados , Glicina/farmacología , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Streptomyces/genética , Glifosato
2.
Phytochemistry ; 172: 112279, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31999963

RESUMEN

Soybeans (Glycine max (L.) Merr.) genetically modified to express aryloxyalkanoate dioxygenase-12 (AAD-12), an enzyme that confers resistance to the herbicide 2,4-D, can sometimes exhibit a darker seed coat coloration than equivalent unmodified soybeans. The biochemical basis for this coloration was investigated in a non-commercial transgenic event, DAS-411Ø4-7 that exhibited more pronounced AAD-12-associated seed coat coloration than the commercial event, DAS-444Ø6-6. Analysis of color-enriched seed coat fractions from DAS-411Ø4-7 showed that the color was due to localized accumulation of iron-chelating phenolics, particularly the isoflavone genistin, that are associated with seed coat pectic polysaccharide and produce a brown chromophore. The association between genistin, iron, and pectic polysaccharide was characterized using a variety of analytical methods. Darker seeds from commercial soybean event DAS-444Ø6-6 also show higher genistin content localized to the darker colored portions of the seed coat (with no increase in whole seed genistin levels).


Asunto(s)
Dioxigenasas , Herbicidas , Quelantes del Hierro , Semillas , Glycine max
3.
Proc Natl Acad Sci U S A ; 116(27): 13299-13304, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31209034

RESUMEN

The synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) is an active ingredient of thousands of commercial herbicides. Multiple species of bacteria degrade 2,4-D via a pathway initiated by the Fe(II) and α-ketoglutarate (Fe/αKG)-dependent aryloxyalkanoate dioxygenases (AADs). Recently, genes encoding 2 AADs have been deployed commercially in herbicide-tolerant crops. Some AADs can also inactivate chiral phenoxypropionate and aryloxyphenoxypropionate (AOPP) herbicides, albeit with varying substrate enantioselectivities. Certain AAD enzymes, such as AAD-1, have expanded utility in weed control systems by enabling the use of diverse modes of action with a single trait. Here, we report 1) the use of a genomic context-based approach to identify 59 additional members of the AAD class, 2) the biochemical characterization of AAD-2 from Bradyrhizobium diazoefficiens USDA 110 as a catalyst to degrade (S)-stereoisomers of chiral synthetic auxins and AOPP herbicides, 3) spectroscopic data that demonstrate the canonical ferryl complex in the AAD-1 reaction, and 4) crystal structures of representatives of the AAD class. Structures of AAD-1, an (R)-enantiomer substrate-specific enzyme, in complexes with a phenoxypropionate synthetic auxin or with AOPP herbicides and of AAD-2, which has the opposite (S)-enantiomeric substrate specificity, reveal the structural basis for stereoselectivity and provide insights into a common catalytic mechanism.


Asunto(s)
Dioxigenasas/metabolismo , Resistencia a los Herbicidas , Herbicidas/metabolismo , Proteínas de Plantas/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo , Dioxigenasas/química , Herbicidas/química , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/química , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/metabolismo , Estructura Terciaria de Proteína , Glycine max , Estereoisomerismo , Relación Estructura-Actividad , Zea mays
4.
Pest Manag Sci ; 75(9): 2301-2309, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30672097

RESUMEN

With the anticipated population growth in the coming decades, the changing regulatory environment, and the continued emergence of resistance to commercial pesticides, there is a constant need to discover new lead chemistries with novel modes of action. We have established a portfolio of approaches to accelerate lead generation. One of these approaches capitalizes on the rich bioactivity of natural products (NPs), highlighted by the numerous examples of NP-based crop protection compounds. Within Corteva Agriscience and the affiliated preceding companies, NPs have been a fruitful approach, for nearly three decades, to identifying and bringing to the market crop protection products inspired by or originating from NPs, . Included in these NP-based crop protection products are the spinosyns family of insecticides, and those from more recent areas of NP-based fungicidal chemistry, as highlighted in this perspective. © 2019 Society of Chemical Industry.


Asunto(s)
Productos Biológicos/química , Protección de Cultivos , Fungicidas Industriales/química , Insecticidas/química , Macrólidos/química
5.
Biochemistry ; 55(9): 1372-83, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26841001

RESUMEN

The prevalence of multiple and extensively drug-resistant strains of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is on the rise, necessitating the identification of new targets to combat an organism that has infected one-third of the world's population, according to the World Health Organization. The biosynthesis of the lipoyl cofactor is one possible target, given its critical importance in cellular metabolism and the apparent lack of functional salvage pathways in Mtb that are found in humans and many other organisms. The lipoyl cofactor is synthesized de novo in two committed steps, involving the LipB-catalyzed transfer of an octanoyl chain derived from fatty acid biosynthesis to a lipoyl carrier protein and the LipA-catalyzed insertion of sulfur atoms at C6 and C8 of the octanoyl chain. A number of in vitro studies of lipoyl synthases from Escherichia coli, Sulfolobus solfataricus, and Thermosynechococcus elongatus have been conducted, but the enzyme from Mtb has not been characterized. Herein, we show that LipA from Mtb contains two [4Fe-4S] clusters and converts an octanoyl peptide substrate to the corresponding lipoyl peptide product via the same C6-monothiolated intermediate as that observed in the E. coli LipA reaction. In addition, we show that LipA from Mtb forms a complex with the H protein of the glycine cleavage system and that the strength of association is dependent on the presence of S-adenosyl-l-methionine. We also show that LipA from Mtb can complement a lipA mutant of E. coli, demonstrating the commonalities of the two enzymes. Lastly, we show that the substrate for LipA, which normally acts on a post-translationally modified protein, can be reduced to carboxybenzyl-octanoyllysine.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Mycobacterium tuberculosis/enzimología , Sulfurtransferasas/química , Sulfurtransferasas/aislamiento & purificación
6.
J Agric Food Chem ; 61(27): 6589-96, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23742120

RESUMEN

Aryloxyalkanoate dioxygenase-12 (AAD-12) was discovered from the soil bacterium Delftia acidovorans MC1 and is a nonheme Fe(II)/α-ketoglutarate-dependent dioxygenase, which can impart herbicide tolerance to transgenic plants by catalyzing the degradation of certain phenoxyacetate, pyridyloxyacetate, and aryloxyphenoxypropionate herbicides. (1) The development of commercial herbicide-tolerant crops, in particular AAD-12-containing soybean, has prompted the need for large quantities of the enzyme for safety testing. To accomplish this, the enzyme was produced in Pseudomonas fluorescens (Pf) and purified to near homogeneity. A small amount of AAD-12 was partially purified from transgenic soybean and through various analytical, biochemical, and in vitro activity analyses demonstrated to be equivalent to the Pf-generated enzyme. Furthermore, results from in vitro kinetic analyses using a variety of plant endogenous compounds revealed activity with trans-cinnamate and indole-3-acetic acid (IAA). The catalytic efficiencies (kcat/Km) of AAD-12 using trans-cinnamate (51.5 M(-1) s(-1)) and IAA (8.2 M(-1) s(-1)) as substrates were very poor when compared to the efficiencies of plant endogenous enzymes. The results suggest that the presence of AAD-12 in transgenic soybean would not likely have an impact on major plant metabolic pathways.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dioxigenasas/química , Dioxigenasas/metabolismo , Glycine max/metabolismo , Herbicidas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Pseudomonas fluorescens/genética , Proteínas Bacterianas/genética , Dioxigenasas/genética , Expresión Génica , Resistencia a los Herbicidas , Herbicidas/farmacología , Hierro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Cinética , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Pseudomonas fluorescens/química , Pseudomonas fluorescens/metabolismo , Glycine max/química , Glycine max/efectos de los fármacos , Glycine max/genética , Especificidad por Sustrato
7.
Science ; 337(6098): 1104-7, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22936780

RESUMEN

Relative to the atmosphere, much of the aerobic ocean is supersaturated with methane; however, the source of this important greenhouse gas remains enigmatic. Catabolism of methylphosphonic acid by phosphorus-starved marine microbes, with concomitant release of methane, has been suggested to explain this phenomenon, yet methylphosphonate is not a known natural product, nor has it been detected in natural systems. Further, its synthesis from known natural products would require unknown biochemistry. Here we show that the marine archaeon Nitrosopumilus maritimus encodes a pathway for methylphosphonate biosynthesis and that it produces cell-associated methylphosphonate esters. The abundance of a key gene in this pathway in metagenomic data sets suggests that methylphosphonate biosynthesis is relatively common in marine microbes, providing a plausible explanation for the methane paradox.


Asunto(s)
Organismos Acuáticos/metabolismo , Archaea/metabolismo , Proteínas Arqueales/metabolismo , Metano/biosíntesis , Compuestos Organofosforados/metabolismo , Aerobiosis , Organismos Acuáticos/genética , Archaea/genética , Proteínas Arqueales/clasificación , Proteínas Arqueales/genética , Dioxigenasas/clasificación , Dioxigenasas/genética , Dioxigenasas/metabolismo , Orden Génico , Metagenoma , Filogenia , Agua de Mar/química , Agua de Mar/microbiología
8.
Biochemistry ; 50(30): 6598-605, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21711001

RESUMEN

HEPD belongs to the superfamily of 2-His-1-carboxylate non-heme iron-dependent dioxygenases. It converts 2-hydroxyethylphosphonate (2-HEP) to hydroxymethylphosphonate (HMP) and formate. Previously postulated mechanisms for the reaction catalyzed by HEPD cannot explain its conversion of 1-HEP to acetylphosphate. Alternative mechanisms that involve either phosphite or methylphosphonate as intermediates, which potentially explain all experimental studies including isotope labeling experiments and use of substrate analogues, were investigated. The results of these studies reveal that these alternative mechanisms are not correct. Site-directed mutagenesis studies of Lys16, Arg90, and Tyr98 support roles of these residues in binding of 2-HEP. Mutation of Lys16 to Ala resulted in an inactive enzyme, whereas mutation of Arg90 to Ala or Tyr98 to Phe greatly decreased k(cat)/K(m,2-HEP). Furthermore, the latter mutants could not be saturated in O(2). These results suggest that proper binding of 2-HEP is important for O(2) activation and that the enzyme uses a compulsory binding order with 2-HEP binding before O(2). The Y98F mutant produces methylphosphonate as a minor side product providing indirect support for the proposal that the last step during catalysis involves a ferric hydroxide reacting with a methylphosphonate radical.


Asunto(s)
Dioxigenasas/química , Organofosfonatos/química , Relación Estructura-Actividad Cuantitativa , Streptomyces/enzimología , Aminobutiratos/química , Vías Biosintéticas/genética , Cristalografía por Rayos X , Dioxigenasas/biosíntesis , Dioxigenasas/genética , Herbicidas/química , Mutagénesis Sitio-Dirigida , Estereoisomerismo , Especificidad por Sustrato/genética
9.
J Am Chem Soc ; 133(12): 4236-9, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21381767

RESUMEN

Stereochemical investigations have shown that the conversion of 2-hydroxyethylphosphonate to hydroxymethylphosphonate by the enzyme HEPD involves removal of the pro-S hydrogen at C2 and, surprisingly, the loss of stereochemical information at C1. As a result, the mechanisms previously proposed for HEPD must be re-evaluated.


Asunto(s)
Dioxigenasas/química , Organofosfonatos/química , Dioxigenasas/metabolismo , Estructura Molecular , Estereoisomerismo
10.
Proc Natl Acad Sci U S A ; 107(47): 20240-5, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21059954

RESUMEN

Engineered glyphosate resistance is the most widely adopted genetically modified trait in agriculture, gaining widespread acceptance by providing a simple robust weed control system. However, extensive and sustained use of glyphosate as a sole weed control mechanism has led to field selection for glyphosate-resistant weeds and has induced significant population shifts to weeds with inherent tolerance to glyphosate. Additional weed control mechanisms that can complement glyphosate-resistant crops are, therefore, urgently needed. 2,4-dichlorophenoxyacetic acid (2,4-D) is an effective low-cost, broad-spectrum herbicide that controls many of the weeds developing resistance to glyphosate. We investigated the substrate preferences of bacterial aryloxyalkanoate dioxygenase enzymes (AADs) that can effectively degrade 2,4-D and have found that some members of this class can act on other widely used herbicides in addition to their activity on 2,4-D. AAD-1 cleaves the aryloxyphenoxypropionate family of grass-active herbicides, and AAD-12 acts on pyridyloxyacetate auxin herbicides such as triclopyr and fluroxypyr. Maize plants transformed with an AAD-1 gene showed robust crop resistance to aryloxyphenoxypropionate herbicides over four generations and were also not injured by 2,4-D applications at any growth stage. Arabidopsis plants expressing AAD-12 were resistant to 2,4-D as well as triclopyr and fluroxypyr, and transgenic soybean plants expressing AAD-12 maintained field resistance to 2,4-D over five generations. These results show that single AAD transgenes can provide simultaneous resistance to a broad repertoire of agronomically important classes of herbicides, including 2,4-D, with utility in both monocot and dicot crops. These transgenes can help preserve the productivity and environmental benefits of herbicide-resistant crops.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/metabolismo , Arabidopsis/genética , Cupriavidus necator/enzimología , Dioxigenasas/genética , Resistencia a los Herbicidas/genética , Herbicidas/toxicidad , Zea mays/genética , Ácido 2,4-Diclorofenoxiacético/toxicidad , Southern Blotting , Western Blotting , Cupriavidus necator/genética , Delftia acidovorans/enzimología , Dioxigenasas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Escherichia coli , Ingeniería Genética , Glicina/análogos & derivados , Glicina/toxicidad , Cinética , Estructura Molecular , Sphingomonadaceae/enzimología , Especificidad por Sustrato , Transformación Genética/genética , Transgenes/genética , Glifosato
11.
J Am Chem Soc ; 131(44): 16225-32, 2009 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-19839620

RESUMEN

Hydroxyethylphosphonate dioxygenase (HEPD) catalyzes the O(2)-dependent cleavage of the carbon-carbon bond of 2-hydroxyethylphosphonate (2-HEP) to afford hydroxymethylphosphonate (HMP) and formate without input of electrons or use of any organic cofactors. Two mechanisms have been proposed to account for this reaction. One involves initial hydroxylation of substrate to an acetal intermediate and its subsequent attack onto an Fe(IV)-oxo species. The second mechanism features initial hydroperoxylation of substrate followed by a Criegee rearrangement. To distinguish between the two mechanisms, substrate analogues were synthesized and presented to the enzyme. Hydroxymethylphosphonate was converted into phosphate and formate, and 1-hydroxyethylphosphonate was converted to acetylphosphate, which is an inhibitor of the enzyme. These results provide strong support for a Criegee rearrangement with a phosphorus-based migrating group and require that the O-O bond of molecular oxygen is not cleaved prior to substrate activation. (2R)-Hydroxypropylphosphonate partitioned between conversion to 2-oxopropylphosphonate and hydroxymethylphosphonate, with the latter in turn converted to phosphate and formate. Collectively, these results support a mechanism that proceeds by hydroperoxylation followed by a Criegee rearrangement.


Asunto(s)
Dioxigenasas/metabolismo , Organofosfonatos/metabolismo , Formiatos , Hidroxilación , Hierro
12.
Nature ; 459(7248): 871-4, 2009 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-19516340

RESUMEN

Natural products containing phosphorus-carbon bonds have found widespread use in medicine and agriculture. One such compound, phosphinothricin tripeptide, contains the unusual amino acid phosphinothricin attached to two alanine residues. Synthetic phosphinothricin (glufosinate) is a component of two top-selling herbicides (Basta and Liberty), and is widely used with resistant transgenic crops including corn, cotton and canola. Recent genetic and biochemical studies showed that during phosphinothricin tripeptide biosynthesis 2-hydroxyethylphosphonate (HEP) is converted to hydroxymethylphosphonate (HMP). Here we report the in vitro reconstitution of this unprecedented C(sp(3))-C(sp(3)) bond cleavage reaction and X-ray crystal structures of the enzyme. The protein is a mononuclear non-haem iron(ii)-dependent dioxygenase that converts HEP to HMP and formate. In contrast to most other members of this family, the oxidative consumption of HEP does not require additional cofactors or the input of exogenous electrons. The current study expands the scope of reactions catalysed by the 2-His-1-carboxylate mononuclear non-haem iron family of enzymes.


Asunto(s)
Aminobutiratos/química , Aminobutiratos/metabolismo , Dioxigenasas/metabolismo , Biocatálisis , Cristalografía por Rayos X , Dioxigenasas/química , Dioxigenasas/genética , Escherichia coli , Formiatos/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Modelos Biológicos , Modelos Moleculares , Conformación Molecular , Organofosfonatos/metabolismo
13.
Biochemistry ; 47(41): 10999-1012, 2008 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-18803397

RESUMEN

Quinolinate synthase (NadA) catalyzes a unique condensation reaction between iminoaspartate and dihydroxyacetone phosphate, affording quinolinic acid, a central intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD). Iminoaspartate is generated via the action of l-aspartate oxidase (NadB), which catalyzes the first step in the biosynthesis of NAD in most prokaryotes. NadA from Escherichia coli was hypothesized to contain an iron-sulfur cluster as early as 1991, because of its observed labile activity, especially in the presence of hyperbaric oxygen, and because its primary structure contained a CXXCXXC motif, which is commonly found in the [4Fe-4S] ferredoxin class of iron-sulfur (Fe/S) proteins. Indeed, using analytical methods in concert with Mossbauer and electron paramagnetic resonance spectroscopies, the protein was later shown to harbor a [4Fe-4S] cluster. Recently, the X-ray structure of NadA from Pyrococcus horikoshii was solved to 2.0 A resolution [Sakuraba, H., Tsuge, H.,Yoneda, K., Katunuma, N., and Ohshima, T. (2005) J. Biol. Chem. 280, 26645-26648]. This protein does not contain a CXXCXXC motif, and no Fe/S cluster was observed in the structure or even mentioned in the report. Moreover, rates of quinolinic acid production were reported to be 2.2 micromol min (-1) mg (-1), significantly greater than that of E. coli NadA containing an Fe/S cluster (0.10 micromol min (-1) mg (-1)), suggesting that the [4Fe-4S] cluster of E. coli NadA may not be necessary for catalysis. In the study described herein, nadA genes from both Mycobacterium tuberculosis and Pyrococcus horikoshii were cloned, and their protein products shown to contain [4Fe-4S] clusters that are absolutely required for activity despite the absence of a CXXCXXC motif in their primary structures. Moreover, E. coli NadA, which contains nine cysteine residues, is shown to require only three for turnover (C113, C200, and C297), of which only C297 resides in the CXXCXXC motif. These results are consistent with a bioinformatics analysis of NadA sequences, which indicates that three cysteines are strictly conserved across all species. This study concludes that all currently annotated quinolinate synthases harbor a [4Fe-4S] cluster, that the crystal structure reported by Sakuraba et al. does not accurately represent the active site of the protein, and that the "activity" reported does not correspond to quinolinate formation.


Asunto(s)
Escherichia coli/enzimología , Complejos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/enzimología , Pyrococcus horikoshii/enzimología , Cromatografía Líquida de Alta Presión , Clonación Molecular , Cristalografía por Rayos X , Regulación Enzimológica de la Expresión Génica , Complejos Multienzimáticos/genética , Espectrofotometría Ultravioleta
14.
Curr Opin Chem Biol ; 11(5): 543-52, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17936058

RESUMEN

The radical SAM superfamily of metalloproteins catalyze the reductive cleavage of S-adenosyl-l-methionine to generate a 5'-deoxyadenosyl radical (5'-dA*) intermediate that is obligate for turnover. The 5'-dA* acts as a potent oxidant, initiating turnover by abstracting a hydrogen atom from an appropriate substrate. A special class of these enzymes use this strategy to functionalize unactivated C-H bonds by insertion of sulfur atoms. This review will describe the characterization of three members of this class - biotin synthase, lipoyl synthase, and MiaB protein - each of which has been shown to cannibalize itself during turnover.


Asunto(s)
Proteínas/metabolismo , S-Adenosilmetionina/metabolismo , Proteínas de Escherichia coli/metabolismo , Radicales Libres , Hidrogenación , Sulfurtransferasas/metabolismo
15.
J Am Chem Soc ; 127(20): 7310-1, 2005 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-15898769

RESUMEN

Quinolinic acid is an intermediate in the biosynthesis of nicotinamide-containing redox cofactors. The ultimate step in the formation of quinolinic acid in prokaryotes is the condensation of iminosuccinate and dihydroxyacetone phosphate, which is catalyzed by the product of the nadA gene in Escherichia coli. A combination of UV-vis, Mössbauer, and EPR spectroscopies, along with analytical methods for the determination of iron and sulfide, demonstrates for the first time that anaerobically purified quinolinate synthetase (NadA) from E. coli contains one [4Fe-4S] cluster per polypeptide. The protein is active, catalyzing the formation of quinolinic acid with a Vmax [ET]-1 of 0.01 s-1.


Asunto(s)
Proteínas Bacterianas/química , Escherichia coli/enzimología , Proteínas Hierro-Azufre/química , Complejos Multienzimáticos/química , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dihidroxiacetona Fosfato/química , Escherichia coli/genética , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , NADP/química , NADP/metabolismo , Plásmidos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrofotometría Ultravioleta , Espectroscopía de Mossbauer
16.
J Am Chem Soc ; 127(9): 2860-1, 2005 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-15740115

RESUMEN

Lipoyl synthase catalyzes the final step in the de novo biosynthesis of the lipoyl cofactor, which is the insertion of two sulfur atoms into an octanoyl chain that is bound in an amide linkage to a conserved lysine on a lipoyl-accepting protein. We show herein that the sulfur atoms in the lipoyl cofactor are derived from lipoyl synthase itself, and that each lipoyl synthase polypeptide contributes both of the sulfur atoms to the intact cofactor.


Asunto(s)
Escherichia coli/metabolismo , Azufre/metabolismo , Sulfurtransferasas/metabolismo , Ácido Tióctico/biosíntesis , Proteínas Bacterianas , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Cromatografía de Gases y Espectrometría de Masas , S-Adenosilmetionina/metabolismo
17.
Protein Expr Purif ; 39(2): 269-82, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15642479

RESUMEN

Lipoic acid is a sulfur-containing 8-carbon fatty acid that functions as a central cofactor in multienzyme complexes that are involved in the oxidative decarboxylation of glycine and several alpha-keto acids. In its functional form, it is bound covalently in an amide linkage to the epsilon-amino group of a conserved lysine residue of the "lipoyl bearing subunit," resulting in a long "swinging arm" that shuttles intermediates among the requisite active sites. In Escherichia coli and many other organisms, the lipoyl cofactor can be synthesized endogenously. The 8-carbon fatty-acyl chain is constructed via the type II fatty acid biosynthetic pathway as an appendage to the acyl carrier protein (ACP). Lipoyl(octanoyl)transferase (LipB) transfers the octanoyl chain from ACP to the target lysine acceptor, generating the substrate for lipoyl synthase (LS), which subsequently catalyzes insertion of both sulfur atoms into the C-6 and C-8 positions of the octanoyl chain. In this study, we present a three-step isolation procedure that results in a 14-fold purification of LipB to >95% homogeneity in an overall yield of 25%. We also show that the protein catalyzes the transfer of the octanoyl group from octanoyl-ACP to apo-H protein, which is the lipoyl bearing subunit of the glycine cleavage system. The specific activity of the purified protein is 0.541 U mg(-1), indicating a turnover number of approximately 0.2 s(-1), and the apparent Km values for octanoyl-ACP and apo-H protein are 10.2+/-4.4 and 13.2+/-2.9 microM, respectively.


Asunto(s)
Aciltransferasas/aislamiento & purificación , Aciltransferasas/metabolismo , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Expresión Génica , Proteína Transportadora de Acilo/metabolismo , Aciltransferasas/genética , Aminoácido Oxidorreductasas , Apoproteínas/metabolismo , Proteínas Portadoras , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Proteínas de Escherichia coli/genética , Histidina/química , Concentración de Iones de Hidrógeno , Punto Isoeléctrico , Cinética , Modelos Biológicos , Peso Molecular , Complejos Multienzimáticos , Concentración Osmolar , Plásmidos , Reacción en Cadena de la Polimerasa , Estructura Cuaternaria de Proteína , Espectrometría de Masa por Ionización de Electrospray , Transferasas
18.
Biochemistry ; 43(37): 11770-81, 2004 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-15362861

RESUMEN

Lipoyl synthase (LS) is a member of a recently established class of metalloenzymes that use S-adenosyl-l-methionine (SAM) as the precursor to a high-energy 5'-deoxyadenosyl 5'-radical (5'-dA(*)). In the LS reaction, the 5'-dA(*) is hypothesized to abstract hydrogen atoms from C-6 and C-8 of protein-bound octanoic acid with subsequent sulfur insertion, generating the lipoyl cofactor. Consistent with this premise, 2 equiv of SAM is required to synthesize 1 equiv of the lipoyl cofactor, and deuterium transfer from octanoyl-d(15) H-protein of the glycine cleavage system-one of the substrates for LS-has been reported [Cicchillo, R. M., Iwig, D. F., Jones, A. D., Nesbitt, N. M., Baleanu-Gogonea, C., Souder, M. G., Tu, L., and Booker, S. J. (2004) Biochemistry 43, 6378-6386]. However, the exact identity of the sulfur donor remains unknown. We report herein that LS from Escherichia coli can accommodate two [4Fe-4S] clusters per polypeptide and that this form of the enzyme is relevant to turnover. One cluster is ligated by the cysteine amino acids in the C-X(3)-C-X(2)-C motif that is common to all radical SAM enzymes, while the other is ligated by the cysteine amino acids residing in a C-X(4)-C-X(5)-C motif, which is conserved only in lipoyl synthases. When expressed in the presence of a plasmid that harbors an Azotobacter vinelandii isc operon, which is involved in Fe/S cluster biosynthesis, the as-isolated wild-type enzyme contained 6.9 +/- 0.5 irons and 6.4 +/- 0.9 sulfides per polypeptide and catalyzed formation of 0.60 equiv of 5'-deoxyadenosine (5'-dA) and 0.27 equiv of lipoylated H-protein per polypeptide. The C68A-C73A-C79A triple variant, expressed and isolated under identical conditions, contained 3.0 +/- 0.1 irons and 3.6 +/- 0.4 sulfides per polypeptide, while the C94A-C98A-C101A triple variant contained 4.2 +/- 0.1 irons and 4.7 +/- 0.8 sulfides per polypeptide. Neither of these variant proteins catalyzed formation of 5'-dA or the lipoyl group. Mössbauer spectroscopy of the as-isolated wild-type protein and the two triple variants indicates that greater than 90% of all associated iron is in the configuration [4Fe-4S](2+). When wild-type LS was reconstituted with (57)Fe and sodium sulfide, it harbored considerably more iron (13.8 +/- 0.6) and sulfide (13.1 +/- 0.2) per polypeptide and catalyzed formation of 0.96 equiv of 5'-dA and 0.36 equiv of the lipoyl group. Mössbauer spectroscopy of this protein revealed that only approximately 67% +/- 6% of the iron is in the form of [4Fe-4S](2+) clusters, amounting to 9.2 +/- 0.4 irons and 8.8 +/- 0.1 sulfides or 2 [4Fe-4S](2+) clusters per polypeptide, with the remainder of the iron occurring as adventitiously bound species. Although the Mössbauer parameters of the clusters associated with each of the variants are similar, EPR spectra of the reduced forms of the cluster show small differences in spin concentration and g-values, consistent with each of these clusters as distinct species residing in each of the two cysteine-containing motifs.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Sulfurtransferasas/metabolismo , Secuencias de Aminoácidos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hierro/metabolismo , S-Adenosilmetionina/metabolismo , Análisis Espectral , Azufre/metabolismo , Sulfurtransferasas/química , Sulfurtransferasas/genética
19.
Biochemistry ; 43(21): 6378-86, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15157071

RESUMEN

Lipoyl synthase (LipA) catalyzes the formation of the lipoyl cofactor, which is employed by several multienzyme complexes for the oxidative decarboxylation of various alpha-keto acids, as well as the cleavage of glycine into CO(2) and NH(3), with concomitant transfer of its alpha-carbon to tetrahydrofolate, generating N(5),N(10)-methylenetetrahydrofolate. In each case, the lipoyl cofactor is tethered covalently in an amide linkage to a conserved lysine residue located on a designated lipoyl-bearing subunit of the complex. Genetic and biochemical studies suggest that lipoyl synthase is a member of a newly established class of metalloenzymes that use S-adenosyl-l-methionine (AdoMet) as a source of a 5'-deoxyadenosyl radical (5'-dA(*)), which is an obligate intermediate in each reaction. These enzymes contain iron-sulfur clusters, which provide an electron during the cleavage of AdoMet, forming l-methionine in addition to the primary radical. Recently, one substrate for lipoyl synthase has been shown to be the octanoylated derivative of the lipoyl-bearing subunit (E(2)) of the pyruvate dehydrogenase complex [Zhao, S., Miller, J. R., Jian, Y., Marletta, M. A., and Cronan, J. E., Jr. (2003) Chem. Biol. 10, 1293-1302]. Herein, we show that the octanoylated derivative of the lipoyl-bearing subunit of the glycine cleavage system (H-protein) is also a substrate for LipA, providing further evidence that the cofactor is synthesized on its target protein. Moreover, we show that the 5'-dA(*) acts directly on the octanoyl substrate, as evidenced by deuterium transfer from [octanoyl-d(15)]H-protein to 5'-deoxyadenosine. Last, our data indicate that 2 equiv of AdoMet are cleaved irreversibly in forming 1 equiv of [lipoyl]H-protein and are consistent with a model in which two LipA proteins are required to synthesize one lipoyl group.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , S-Adenosilmetionina/metabolismo , Ácido Tióctico/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Cromatografía Liquida/métodos , Desoxiadenosinas/química , Escherichia coli/genética , Hidrógeno , Espectrometría de Masas/métodos , Ingeniería de Proteínas/métodos , S-Adenosilmetionina/química , Ácido Tióctico/química
20.
J Biol Chem ; 279(31): 32418-25, 2004 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-15155761

RESUMEN

L-Serine deaminases catalyze the deamination of L-serine, producing pyruvate and ammonia. Two families of these proteins have been described and are delineated by the cofactor that each employs in catalysis. These are the pyridoxal 5'-phosphate-dependent deaminases and the deaminases that are activated in vitro by iron and dithiothreitol. In contrast to the enzymes that employ pyridoxal 5'-phosphate, detailed physical and mechanistic characterization of the iron-dependent deaminases is limited, primarily because of their extreme instability. We report here the characterization of L-serine deaminase from Escherichia coli, which is the product of the sdaA gene. When purified anaerobically, the isolated protein contains 1.86 +/- 0.46 eq of iron and 0.670 +/- 0.019 eq of sulfide per polypeptide and displays a UV-visible spectrum that is consistent with a [4Fe-4S] cluster. Reconstitution of the protein with iron and sulfide generates considerably more of the cluster, and treatment of the reconstituted protein with dithionite gives rise to an axial EPR spectrum, displaying g axially = 2.03 and g radially = 1.93. Mössbauer spectra of the (57)Fe-reconstituted protein reveal that the majority of the iron is in the form of [4Fe-4S](2+) clusters, as evidenced by the typical Mössbauer parameters-isomer shift, delta = 0.47 mm/s, quadrupole splitting of Delta E(Q) = 1.14 mm/s, and a diamagnetic (S = 0) ground state. Treatment of the dithionite-reduced protein with L-serine results in a slight broadening of the feature at g = 2.03 in the EPR spectrum of the protein, and a dramatic loss in signal intensity, suggesting that the amino acid interacts directly with the cluster.


Asunto(s)
Escherichia coli/enzimología , Proteínas Hierro-Azufre/química , L-Serina Deshidratasa/química , Unión Competitiva , Catálisis , Cromatografía , Ditionita/química , Relación Dosis-Respuesta a Droga , Espectroscopía de Resonancia por Spin del Electrón , Hierro/química , Cinética , Magnetismo , Modelos Químicos , Péptidos/química , Serina/química , Transducción de Señal , Espectrofotometría , Espectroscopía de Mossbauer , Sulfuros/química , Termodinámica , Factores de Tiempo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA