Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 38
1.
BMJ Open Ophthalmol ; 8(Suppl 2): A5-A6, 2023 08.
Article En | MEDLINE | ID: mdl-37604531

PURPOSE: Considering the growing shortage of corneal tissues for research, the present study aimed to develop and optimize a porcine cornea model with qualitative features comparable to those of human tissues. METHODS: A new decontamination procedure of porcine eye bulbs was set up and its efficacy as well as endothelial mortality were evaluated. Human corneas unsuitable for transplant and porcine corneas were then compared after storage under hypothermic (4-8°C, Eusol-C, AL.CHI.MI.A. S.R.L) or organ-culture (31-35°C, Tissue-C, AL.CHI.MI.A. S.R.L) storage conditions for 14 days. A new method, based on the semi-automatic analysis of Trypan-blue stained endothelial areas by Fiji software, was developed to quantify the whole endothelium viability. Corneas were assessed for central corneal thickness (CCT), corneal transparency, endothelial morphology, and endothelial cell density (ECD) at days 0, 7, and 14 of storage. Portions of lamellar tissues consisting of Descemet's membrane and endothelial cells were prepared for histological investigations. RESULTS: The new decontamination procedure of porcine eye bulbs resulted in 18% versus 89% ('no decontamination' control) of corneas still contaminated after 28 days of storage at 31°C. The decontamination protocol did not affect endothelium viability, as assessed by the new Fiji-based method. ECD (porcine: 3156 ± 144 cells/mm2; human: 2287 ± 152 cells/mm2), CCT (porcine: 1073 ± 151 µm; human: 581 ± 39 µm), transparency (porcine: 88.6 ± 11.0%; human: 76.3 ± 5.4%), and morphology score (porcine: 4.0 ± 0.0; human: 3.2 ± 0.4) measured in the porcine cornea at day 0 were significantly higher than in human corneas. Nonetheless, the qualitative parameters of porcine and human corneas showed comparable trends during the storage under hypothermic (4-8°C) and organ-culture (31-35°C) conditions for 14 days. CONCLUSION: The presented porcine cornea model represents a reliable and alternative model to human donor tissues for preliminary investigations and can be used for testing new media, substances, drugs, or preservation conditions and their impact on corneal tissue quality and safety. Furthermore, the quantitative method to assess whole endothelium mortality can be implemented at eye banks for the evaluation of corneas intended for transplantation.


Endothelial Cells , Animals , Swine , Disease Models, Animal , Cornea/surgery
2.
JCI Insight ; 8(15)2023 08 08.
Article En | MEDLINE | ID: mdl-37551712

Age-associated sarcopenia, characterized by a progressive loss in muscle mass and strength, is the largest cause of frailty and disability in the elderly worldwide. Current treatments involve nonpharmacological guidelines that few subjects can abide by, highlighting the need for effective drugs. Preclinical models were employed to test the benefits of RJx-01, a combination drug composed of metformin and galantamine, on sarcopenia. In worms, RJx-01 treatment improved lifespan, locomotion, pharyngeal pumping, and muscle fiber organization. The synergistic effects of RJx-01 were recapitulated in a transgenic mouse model that displays an exacerbated aging phenotype (Opa1-/-). In these mice, RJx-01 ameliorated physical performance, muscle mass and force, neuromuscular junction stability, and systemic inflammation. RJx-01 also improved physical performance and muscle strength in 22-month-old WT mice and also improved skeletal muscle ultrastructure, mitochondrial morphology, autophagy, lysosomal function, and satellite cell content. Denervation and myofiber damage were decreased in RJx-01-treated animals compared with controls. RJx-01 improved muscle quality rather than quantity, indicating that the improvement in quality underlies the beneficial effects of the combination drug. The studies herein indicate synergistic beneficial effects of RJx-01 in the treatment of sarcopenia and support the pursuit of RJx-01 in a human clinical trial as a therapeutic intervention for sarcopenia.


Metformin , Sarcopenia , Humans , Mice , Animals , Aged , Infant , Sarcopenia/drug therapy , Galantamine/pharmacology , Metformin/pharmacology , Aging/physiology , Muscle, Skeletal/pathology , Mice, Transgenic
3.
Transl Vis Sci Technol ; 12(4): 24, 2023 04 03.
Article En | MEDLINE | ID: mdl-37079319

Purpose: Due to the growing shortage of human corneas for research, we developed a porcine cornea storage model with qualitative features comparable to human tissues. Methods: We established a decontamination procedure for porcine eye bulbs to ensure corneal storage at 31°C to 35°C for up to 28 days without contamination. We compared human and porcine corneas under hypothermic (2-8°C) or culture (31-35°C) conditions for central corneal thickness (CCT), corneal transparency, endothelial morphology, endothelial cell density (ECD), and a novel method to quantify whole endothelial mortality. We also examined portions of lamellar tissues consisting of Descemet's membrane and endothelial cells under the microscope after Alizarin red staining. Results: Our decontamination procedure reduced corneal contamination from 94% (control corneas without decontamination) to 18% after 28 days of storage at 31°C to 35°C. ECD, CCT, transparency, and morphology were significantly higher in porcine corneas than in human corneas at day 0. Nevertheless, the qualitative parameters of porcine and human corneas showed comparable trends under both investigated storage conditions for up to 14 days. Conclusions: The presented corneal storage model provides a reliable alternative to human tissues for preliminary corneal investigations. Translational Relevance: The porcine cornea storage model can be used to investigate the efficacy and safety of new media, substances, or storage conditions. Furthermore, the method developed to assess the percentage of endothelial mortality is tissue conservative and can be used in eye banks to monitor endothelial mortality during storage of tissues intended for transplantation.


Endothelial Cells , Endothelium, Corneal , Humans , Swine , Animals , Cornea , Tissue Donors
4.
Diabetes ; 72(4): 483-495, 2023 04 01.
Article En | MEDLINE | ID: mdl-36657995

Innate immune cells infiltrate growing adipose tissue and propagate inflammatory clues to metabolically distant tissues, thereby promoting glucose intolerance and insulin resistance. Cytokines of the IL-6 family and gp130 ligands are among such signals. The role played by oncostatin M (OSM) in the metabolic consequences of overfeeding is debated, at least in part, because prior studies did not distinguish OSM sources and dynamics. Here, we explored the role of OSM in metabolic responses and used bone marrow transplantation to test the hypothesis that hematopoietic cells are major contributors to the metabolic effects of OSM. We show that OSM is required to adapt during the development of obesity because OSM concentrations are dynamically modulated during high-fat diet (HFD) and Osm-/- mice displayed early-onset glucose intolerance, impaired muscle glucose uptake, and worsened liver inflammation and damage. We found that OSM is mostly produced by blood cells and deletion of OSM in hematopoietic cells phenocopied glucose intolerance of whole-body Osm-/- mice fed a HFD and recapitulated liver damage with increased aminotransferase levels. We thus uncovered that modulation of OSM is involved in the metabolic response to overfeeding and that hematopoietic cell-derived OSM can regulate metabolism, likely via multiple effects in different tissues.


Glucose Intolerance , Hematopoietic Stem Cell Transplantation , Mice , Animals , Oncostatin M/genetics , Oncostatin M/metabolism , Glucose Intolerance/metabolism , Adipose Tissue/metabolism , Diet, High-Fat/adverse effects
5.
Endocrinology ; 164(3)2023 01 09.
Article En | MEDLINE | ID: mdl-36702623

Alström syndrome (AS) is a rare genetic disease caused by ALMS1 mutations, characterized by short stature, and vision and hearing loss. Patients with AS develop the metabolic syndrome, long-term organ complications, and die prematurely. We explored the association between AS and a shortage of hematopoietic stem/progenitor cells (HSPCs), which is linked to metabolic diseases and predicts diabetic complications. We included patients with AS at a national referral center. We measured HSPCs with flow cytometry at baseline and follow-up. We followed patients up to January 2022 for metabolic worsening and end-organ damage. We evaluated HSPC levels and mobilization as well as bone marrow histology in a murine model of AS. In 23 patients with AS, we found significantly lower circulating HSPCs than in healthy blood donors (-40%; P = .002) and age/sex-matched patients (-25%; P = .022). Longitudinally, HSPCs significantly declined by a further 20% in patients with AS over a median of 36 months (interquartile range 30-44). Patients with AS who displayed metabolic deterioration over 5.3 years had lower levels of HSPCs, both at baseline and at last observation, than those who did not deteriorate. Alms1-mutated mice were obese and insulin resistant and displayed significantly reduced circulating HSPCs, despite no overt hematological abnormality. Contrary to what was observed in diabetic mice, HSPC mobilization and bone marrow structure were unaffected. We found depletion of HSPCs in patients with AS, which was recapitulated in Alms1-mutated mice. Larger and longer studies will be needed to establish HSPCs shortage as a driver of metabolic deterioration leading to end-organ damage in AS.


Alstrom Syndrome , Diabetes Mellitus, Experimental , Metabolic Syndrome , Animals , Mice , Metabolic Syndrome/genetics , Metabolic Syndrome/metabolism , Alstrom Syndrome/genetics , Alstrom Syndrome/metabolism , Diabetes Mellitus, Experimental/metabolism , Models, Genetic , Bone Marrow Cells/metabolism , Hematopoietic Stem Cells
6.
PNAS Nexus ; 1(3): pgac086, 2022 Jul.
Article En | MEDLINE | ID: mdl-36741463

Astronauts experience dramatic loss of muscle mass, decreased strength, and insulin resistance, despite performing daily intense physical exercise that would lead to muscle growth on Earth. Partially mimicking spaceflight, prolonged bed rest causes muscle atrophy, loss of force, and glucose intolerance. To unravel the underlying mechanisms, we employed highly sensitive single fiber proteomics to detail the molecular remodeling caused by unloading and inactivity during bed rest and changes of the muscle proteome of astronauts before and after a mission on the International Space Station. Muscle focal adhesions, involved in fiber-matrix interaction and insulin receptor stabilization, are prominently downregulated in both bed rest and spaceflight and restored upon reloading. Pathways of antioxidant response increased strongly in slow but not in fast muscle fibers. Unloading alone upregulated markers of neuromuscular damage and the pathway controlling EIF5A hypusination. These proteomic signatures of mechanical unloading in muscle fiber subtypes contribute to disentangle the effect of microgravity from the pleiotropic challenges of spaceflight.

7.
J Cachexia Sarcopenia Muscle ; 13(1): 648-661, 2022 02.
Article En | MEDLINE | ID: mdl-34741441

BACKGROUND: Cancer-related muscle wasting occurs in most cancer patients. An important regulator of adult muscle mass and function is the Akt-mTORC1 pathway. While Akt-mTORC1 signalling is important for adult muscle homeostasis, it is also a major target of numerous cancer treatments. Which role Akt-mTORC1 signalling plays during cancer cachexia in muscle is currently not known. Here, we aimed to determine how activation or inactivation of the pathway affects skeletal muscle during cancer cachexia. METHODS: We used inducible, muscle-specific Raptor ko (mTORC1) mice to determine the effect of reduced mTOR signalling during cancer cachexia. On the contrary, in order to understand if skeletal muscles maintain their anabolic capacity and if activation of Akt-mTORC1 signalling can reverse cancer cachexia, we generated mice in which we can inducibly activate Akt specifically in skeletal muscles. RESULTS: We found that mTORC1 signalling is impaired during cancer cachexia, using the Lewis lung carcinoma and C26 colon cancer model, and is accompanied by a reduction in protein synthesis rates of 57% (P < 0.01). Further reduction of mTOR signalling, as seen in Raptor ko animals, leads to a 1.5-fold increase in autophagic flux (P > 0.001), but does not further increase muscle wasting. On the other hand, activation of Akt-mTORC1 signalling in already cachectic animals completely reverses the 15-20% loss in muscle mass and force (P < 0.001). Interestingly, Akt activation only in skeletal muscle completely normalizes the transcriptional deregulation observed in cachectic muscle, despite having no effect on tumour size or spleen mass. In addition to stimulating muscle growth, it is also sufficient to prevent the increase in protein degradation normally observed in muscles from tumour-bearing animals. CONCLUSIONS: Here, we show that activation of Akt-mTORC1 signalling is sufficient to completely revert cancer-dependent muscle wasting. Intriguingly, these results show that skeletal muscle maintains its anabolic capacities also during cancer cachexia, possibly giving a rationale behind some of the beneficial effects observed in exercise in cancer patients.


Cachexia , Carcinoma, Lewis Lung , Animals , Cachexia/pathology , Carcinoma, Lewis Lung/pathology , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Muscle, Skeletal/pathology , Proto-Oncogene Proteins c-akt/metabolism
8.
J Physiol ; 599(12): 3037-3061, 2021 06.
Article En | MEDLINE | ID: mdl-33881176

KEY POINTS: Few days of unloading are sufficient to induce a decline of skeletal muscle mass and function; notably, contractile force is lost at a faster rate than muscle mass. The reasons behind this disproportionate loss of muscle force are still poorly understood. We provide strong evidence of two mechanisms only hypothesized until now for the rapid muscle force loss in only 10 days of bed rest. Our results show that an initial neuromuscular junction instability, accompanied by alterations in the innervation status and impairment of single fibre sarcoplasmic reticulum function contribute to the loss of contractile force in front of a preserved myofibrillar function and central activation capacity. Early onset of neuromuscular junction instability and impairment in calcium dynamics involved in excitation-contraction coupling are proposed as eligible determinants to the greater decline in muscle force than in muscle size during unloading. ABSTRACT: Unloading induces rapid skeletal muscle atrophy and functional decline. Importantly, force is lost at a much higher rate than muscle mass. We aimed to investigate the early determinants of the disproportionate loss of force compared to that of muscle mass in response to unloading. Ten young participants underwent 10 days of bed rest (BR). At baseline (BR0) and at 10 days (BR10), quadriceps femoris (QF) volume (VOL) and isometric maximum voluntary contraction (MVC) were assessed. At BR0 and BR10 blood samples and biopsies of vastus lateralis (VL) muscle were collected. Neuromuscular junction (NMJ) stability and myofibre innervation status were assessed, together with single fibre mechanical properties and sarcoplasmic reticulum (SR) calcium handling. From BR0 to BR10, QFVOL and MVC decreased by 5.2% (P = 0.003) and 14.3% (P < 0.001), respectively. Initial and partial denervation was detected from increased neural cell adhesion molecule (NCAM)-positive myofibres at BR10 compared with BR0 (+3.4%, P = 0.016). NMJ instability was further inferred from increased C-terminal agrin fragment concentration in serum (+19.2% at BR10, P = 0.031). Fast fibre cross-sectional area (CSA) showed a trend to decrease by 15% (P = 0.055) at BR10, while single fibre maximal tension (force/CSA) was unchanged. However, at BR10 SR Ca2+ release in response to caffeine decreased by 35.1% (P < 0.002) and 30.2% (P < 0.001) in fast and slow fibres, respectively, pointing to an impaired excitation-contraction coupling. These findings support the view that the early onset of NMJ instability and impairment in SR function are eligible mechanisms contributing to the greater decline in muscle force than in muscle size during unloading.


Calcium , Sarcoplasmic Reticulum , Humans , Muscle Contraction , Muscle, Skeletal , Neuromuscular Junction , Quadriceps Muscle
9.
Diabetes ; 69(7): 1562-1572, 2020 07.
Article En | MEDLINE | ID: mdl-32345753

Mobilization of hematopoietic stem/progenitor cells (HSPC) from the bone marrow (BM) is impaired in diabetes. Excess oncostatin M (OSM) produced by M1 macrophages in the diabetic BM signals through p66Shc to induce Cxcl12 in stromal cells and retain HSPC. BM adipocytes are another source of CXCL12 that blunts mobilization. We tested a strategy of pharmacologic macrophage reprogramming to rescue HSPC mobilization. In vitro, PPAR-γ activation with pioglitazone switched macrophages from M1 to M2, reduced Osm expression, and prevented transcellular induction of Cxcl12 In diabetic mice, pioglitazone treatment downregulated Osm, p66Shc, and Cxcl12 in the hematopoietic BM, restored the effects of granulocyte-colony stimulation factor (G-CSF), and partially rescued HSPC mobilization, but it increased BM adipocytes. Osm deletion recapitulated the effects of pioglitazone on adipogenesis, which was p66Shc independent, and double knockout of Osm and p66Shc completely rescued HSPC mobilization. In the absence of OSM, BM adipocytes produced less CXCL12, being arguably devoid of HSPC-retaining activity, whereas pioglitazone failed to downregulate Cxcl12 in BM adipocytes. In patients with diabetes on pioglitazone therapy, HSPC mobilization after G-CSF was partially rescued. In summary, pioglitazone reprogrammed BM macrophages and suppressed OSM signaling, but sustained Cxcl12 expression by BM adipocytes could limit full recovery of HSPC mobilization.


Bone Marrow Cells/drug effects , Diabetes Mellitus, Experimental/drug therapy , Hematopoietic Stem Cell Mobilization , Macrophages/drug effects , PPAR gamma/agonists , Pioglitazone/pharmacology , Adipogenesis , Animals , Bone Marrow Cells/physiology , Cellular Reprogramming , Chemokine CXCL12/biosynthesis , Female , Humans , Macrophages/physiology , Male , Mice , Mice, Inbred C57BL , Oncostatin M/antagonists & inhibitors , Src Homology 2 Domain-Containing, Transforming Protein 1/physiology
10.
Diabetes ; 68(6): 1303-1314, 2019 06.
Article En | MEDLINE | ID: mdl-30936144

Diabetes impairs the mobilization of hematopoietic stem/progenitor cells (HSPCs) from the bone marrow (BM), which can worsen the outcomes of HSPC transplantation and of diabetic complications. In this study, we examined the oncostatin M (OSM)-p66Shc pathway as a mechanistic link between HSPC mobilopathy and excessive myelopoiesis. We found that streptozotocin-induced diabetes in mice skewed hematopoiesis toward the myeloid lineage via hematopoietic-intrinsic p66Shc. The overexpression of Osm resulting from myelopoiesis prevented HSPC mobilization after granulocyte colony-stimulating factor (G-CSF) stimulation. The intimate link between myelopoiesis and impaired HSPC mobilization after G-CSF stimulation was confirmed in human diabetes. Using cross-transplantation experiments, we found that deletion of p66Shc in the hematopoietic or nonhematopoietic system partially rescued defective HSPC mobilization in diabetes. Additionally, p66Shc mediated the diabetes-induced BM microvasculature remodeling. Ubiquitous or hematopoietic restricted Osm deletion phenocopied p66Shc deletion in preventing diabetes-associated myelopoiesis and mobilopathy. Mechanistically, we discovered that OSM couples myelopoiesis to mobilopathy by inducing Cxcl12 in BM stromal cells via nonmitochondrial p66Shc. Altogether, these data indicate that cell-autonomous activation of the OSM-p66Shc pathway leads to diabetes-associated myelopoiesis, whereas its transcellular hematostromal activation links myelopoiesis to mobilopathy. Targeting the OSM-p66Shc pathway is a novel strategy to disconnect mobilopathy from myelopoiesis and restore normal HSPC mobilization.


Diabetes Mellitus, Experimental/metabolism , Hematopoietic Stem Cells/metabolism , Myelopoiesis/genetics , Oncostatin M/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Adult , Aged , Animals , Bone Marrow Transplantation , Chemokine CXCL12/genetics , Diabetes Mellitus/metabolism , Female , Granulocyte Colony-Stimulating Factor , Hematopoietic Stem Cell Mobilization , Humans , Male , Mesenchymal Stem Cells/metabolism , Middle Aged , Oncostatin M/metabolism , Signal Transduction , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Stem Cells
11.
Int J Mol Sci ; 20(4)2019 Feb 24.
Article En | MEDLINE | ID: mdl-30813483

Initially reported as a longevity-related protein, the 66 kDa isoform of the mammalian Shc1 locus has been implicated in several metabolic pathways, being able to act both as an adaptor protein and as a redox enzyme capable of generating reactive oxygen species (ROS) when it localizes to the mitochondrion. Ablation of p66Shc has been shown to be protective against obesity and the insurgence of insulin resistance, but not all the studies available in the literature agree on these points. This review will focus in particular on the role of p66Shc in the modulation of glucose homeostasis, obesity, body temperature, and respiration/energy expenditure. In view of the obesity and diabetes epidemic, p66Shc may represent a promising therapeutic target with enormous implications for human health.


Insulin Resistance , Obesity/enzymology , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Animals , Energy Metabolism , Humans , Oxidation-Reduction , Signal Transduction
12.
Cell Death Differ ; 26(2): 362-381, 2019 01.
Article En | MEDLINE | ID: mdl-30232375

Skeletal muscle mitochondria readily accumulate Ca2+ in response to SR store-releasing stimuli thanks to the activity of the mitochondrial calcium uniporter (MCU), the highly selective channel responsible for mitochondrial Ca2+ uptake. MCU positively regulates myofiber size in physiological conditions and counteracts pathological loss of muscle mass. Here we show that skeletal muscle-specific MCU deletion inhibits myofiber mitochondrial Ca2+ uptake, impairs muscle force and exercise performance, and determines a slow to fast switch in MHC expression. Mitochondrial Ca2+ uptake is required for effective glucose oxidation, as demonstrated by the fact that in muscle-specific MCU-/- myofibers oxidative metabolism is impaired and glycolysis rate is increased. Although defective, mitochondrial activity is partially sustained by increased fatty acid (FA) oxidation. In MCU-/- myofibers, PDP2 overexpression drastically reduces FA dependency, demonstrating that decreased PDH activity is the main trigger of the metabolic rewiring of MCU-/- muscles. Accordingly, PDK4 overexpression in MCUfl/fl myofibers is sufficient to increase FA-dependent respiration. Finally, as a result of the muscle-specific MCU deletion, a systemic catabolic response impinging on both liver and adipose tissue metabolism occurs.


Calcium Channels/genetics , Calcium Channels/metabolism , Fatty Acids/metabolism , Gene Silencing , Muscle, Skeletal/metabolism , Myosin Heavy Chains/metabolism , Animals , Calcium/metabolism , Cytosol/metabolism , Energy Metabolism/genetics , Glucose/metabolism , Glycolysis , Male , Mice , Mice, Transgenic , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Muscle Strength/genetics , Oxidation-Reduction , Physical Conditioning, Animal , Protein Phosphatase 2C/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
13.
PLoS Biol ; 16(8): e2005886, 2018 08.
Article En | MEDLINE | ID: mdl-30096135

Circadian clocks are fundamental physiological regulators of energy homeostasis, but direct transcriptional targets of the muscle clock machinery are unknown. To understand how the muscle clock directs rhythmic metabolism, we determined genome-wide binding of the master clock regulators brain and muscle ARNT-like protein 1 (BMAL1) and REV-ERBα in murine muscles. Integrating occupancy with 24-hr gene expression and metabolomics after muscle-specific loss of BMAL1 and REV-ERBα, here we unravel novel molecular mechanisms connecting muscle clock function to daily cycles of lipid and protein metabolism. Validating BMAL1 and REV-ERBα targets using luciferase assays and in vivo rescue, we demonstrate how a major role of the muscle clock is to promote diurnal cycles of neutral lipid storage while coordinately inhibiting lipid and protein catabolism prior to awakening. This occurs by BMAL1-dependent activation of Dgat2 and REV-ERBα-dependent repression of major targets involved in lipid metabolism and protein turnover (MuRF-1, Atrogin-1). Accordingly, muscle-specific loss of BMAL1 is associated with metabolic inefficiency, impaired muscle triglyceride biosynthesis, and accumulation of bioactive lipids and amino acids. Taken together, our data provide a comprehensive overview of how genomic binding of BMAL1 and REV-ERBα is related to temporal changes in gene expression and metabolite fluctuations.


ARNTL Transcription Factors/physiology , Circadian Clocks/physiology , Muscle, Skeletal/physiology , Amino Acids/metabolism , Amino Acids/physiology , Animals , CLOCK Proteins/genetics , Circadian Rhythm/genetics , Gene Expression , Homeostasis , Humans , Lipid Metabolism/physiology , Lipids , Mice , Mice, Knockout , RNA, Messenger/metabolism
14.
FASEB J ; 32(7): 4004-4015, 2018 07.
Article En | MEDLINE | ID: mdl-29466053

The 66 kDa isoform of the mammalian Shc gene promotes adipogenesis, and p66Shc-/- mice accumulate less body weight than wild-type (WT) mice. As the metabolic consequences of the leaner phenotype of p66Shc-/- mice is debated, we hypothesized that gut microbiota may be involved. We confirmed that p66Shc-/- mice gained less weight than WT mice when on a high-fat diet (HFD), but they were not protected from insulin resistance and glucose intolerance. p66Shc deletion significantly modified the composition of gut microbiota and their modification after an HFD. This was associated with changes in gene expression of Il-1b and regenerating islet-derived protein 3 γ ( Reg3g) in the gut and in systemic trimethylamine N-oxide and branched chain amino acid levels, despite there being no difference in intestinal structure and permeability. Depleting gut microbiota at the end of HFD rendered both strains more glucose tolerant but improved insulin sensitivity only in p66Shc-/- mice. Microbiota-depleted WT mice cohoused with microbiota-competent p66Shc-/- mice became significantly more insulin resistant than WT mice cohoused with WT mice, despite no difference in weight gain. These findings reconcile previous inconsistent observations on the metabolic phenotype of p66Shc-/- mice and illustrate the complex microbiome-host-genotype interplay under metabolic stress.-Ciciliot, S., Albiero, M., Campanaro, S., Poncina, N., Tedesco, S., Scattolini, V., Dalla Costa, F., Cignarella, A., Vettore, M., Di Gangi, I. M., Bogialli, S., Avogaro, A., Fadini, G. P. Interplay between gut microbiota and p66Shc affects obesity-associated insulin resistance.


Gastrointestinal Microbiome , Insulin Resistance , Obesity/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Animals , Diet, High-Fat/adverse effects , Female , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/genetics , Obesity/microbiology , Pancreatitis-Associated Proteins/genetics , Pancreatitis-Associated Proteins/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
15.
Cell Rep ; 19(11): 2396-2409, 2017 06 13.
Article En | MEDLINE | ID: mdl-28614723

Skeletal muscle is a key tissue in human aging, which affects different muscle fiber types unequally. We developed a highly sensitive single muscle fiber proteomics workflow to study human aging and show that the senescence of slow and fast muscle fibers is characterized by diverging metabolic and protein quality control adaptations. Whereas mitochondrial content declines with aging in both fiber types, glycolysis and glycogen metabolism are upregulated in slow but downregulated in fast muscle fibers. Aging mitochondria decrease expression of the redox enzyme monoamine oxidase A. Slow fibers upregulate a subset of actin and myosin chaperones, whereas an opposite change happens in fast fibers. These changes in metabolism and sarcomere quality control may be related to the ability of slow, but not fast, muscle fibers to maintain their mass during aging. We conclude that single muscle fiber analysis by proteomics can elucidate pathophysiology in a sub-type-specific manner.


Glycogen/physiology , Glycolysis/physiology , Muscle Fibers, Skeletal/metabolism , Proteomics/methods , Aging , Humans
16.
Front Physiol ; 8: 279, 2017.
Article En | MEDLINE | ID: mdl-28529490

Microgravity as well as chronic muscle disuse are two causes of low back pain originated at least in part from paraspinal muscle deconditioning. At present no study investigated the complexity of the molecular changes in human or mouse paraspinal muscles exposed to microgravity. The aim of this study was to evaluate longissimus dorsi adaptation to microgravity at both morphological and global gene expression level. C57BL/N6 male mice were flown aboard the BION-M1 biosatellite for 30 days (BF) or housed in a replicate flight habitat on ground (BG). Myofiber cross sectional area and myosin heavy chain subtype patterns were respectively not or slightly altered in longissimus dorsi of BF mice. Global gene expression analysis identified 89 transcripts differentially regulated in longissimus dorsi of BF vs. BG mice. Microgravity-induced gene expression changes of lipocalin 2 (Lcn2), sestrin 1(Sesn1), phosphatidylinositol 3-kinase, regulatory subunit polypeptide 1 (p85 alpha) (Pik3r1), v-maf musculoaponeurotic fibrosarcoma oncogene family protein B (Mafb), protein kinase C delta (Prkcd), Muscle Atrophy F-box (MAFbx/Atrogin-1/Fbxo32), and Muscle RING Finger 1 (MuRF-1) were further validated by real time qPCR analysis. In conclusion, our study highlighted the regulation of transcripts mainly linked to insulin sensitivity and metabolism in longissimus dorsi following 30 days of microgravity exposure. The apparent absence of robust signs of back muscle atrophy in space-flown mice, despite the overexpression of Atrogin-1 and MuRF-1, opens new questions on the possible role of microgravity-sensitive genes in the regulation of peripheral insulin resistance following unloading and its consequences on paraspinal skeletal muscle physiology.

17.
Cell Metab ; 25(6): 1374-1389.e6, 2017 Jun 06.
Article En | MEDLINE | ID: mdl-28552492

Mitochondrial dysfunction occurs during aging, but its impact on tissue senescence is unknown. Here, we find that sedentary but not active humans display an age-related decline in the mitochondrial protein, optic atrophy 1 (OPA1), that is associated with muscle loss. In adult mice, acute, muscle-specific deletion of Opa1 induces a precocious senescence phenotype and premature death. Conditional and inducible Opa1 deletion alters mitochondrial morphology and function but not DNA content. Mechanistically, the ablation of Opa1 leads to ER stress, which signals via the unfolded protein response (UPR) and FoxOs, inducing a catabolic program of muscle loss and systemic aging. Pharmacological inhibition of ER stress or muscle-specific deletion of FGF21 compensates for the loss of Opa1, restoring a normal metabolic state and preventing muscle atrophy and premature death. Thus, mitochondrial dysfunction in the muscle can trigger a cascade of signaling initiated at the ER that systemically affects general metabolism and aging.


Aging/metabolism , GTP Phosphohydrolases/metabolism , Muscle, Skeletal/enzymology , Aging/genetics , Aging/pathology , Animals , Cellular Senescence/genetics , Endoplasmic Reticulum Stress/genetics , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , GTP Phosphohydrolases/genetics , Inflammation/enzymology , Inflammation/genetics , Inflammation/pathology , Mice , Muscle, Skeletal/pathology , Muscular Atrophy/enzymology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Organ Size , Unfolded Protein Response/genetics
18.
PLoS One ; 12(1): e0169314, 2017.
Article En | MEDLINE | ID: mdl-28076365

Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice) skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype) but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus). Adult C57Bl/N6 male mice (n = 5) flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013), a sex and age-matched cohort were housed in standard vivarium cages (n = 5), or in a replicate flight habitat as ground control (n = 5). Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift) as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common) compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response). Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6) were further validated by quantitative real-time PCR (qRT-PCR). Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight.


Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/genetics , Space Flight , Weightlessness , Animals , Gene Expression Profiling , Male , Mice , Mice, Inbred C57BL , Microarray Analysis , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Time Factors , Weightlessness/adverse effects
19.
Stem Cells ; 35(1): 106-116, 2017 01.
Article En | MEDLINE | ID: mdl-27401837

Diabetes mellitus is a complex systemic disease characterized by severe morbidity and excess mortality. The burden of its multiorgan complications relies on an imbalance between hyperglycemic cell damage and defective endogenous reparative mechanisms. Inflammation and abnormalities in several hematopoietic components are typically found in diabetes. The discovery that diabetes reduces circulating stem/progenitor cells and impairs their function has opened an entire new field of study where diabetology comes into contact with hematology and regenerative medicine. It is being progressively recognized that such rare circulating cell populations mirror finely regulated processes involved in hematopoiesis, immunosurveillance, and peripheral tissue homeostasis. From a clinical perspective, pauperization of circulating stem cells predicts adverse outcomes and death. Furthermore, studies in murine models and humans have identified the bone marrow (BM) as a previously neglected site of diabetic end-organ damage, characterized by microangiopathy, neuropathy, fat deposition, and inflammation. As a result, diabetes impairs the mobilization of BM stem/progenitor cells, a defect known as mobilopathy or myelokathexis, with negative consequences for physiologic hematopoiesis, immune regulation, and tissue regeneration. A better understanding of the molecular and cellular processes that govern the BM stem cell niche, cell mobilization, and kinetics in peripheral tissues may uncover new therapeutic strategies for patients with diabetes. This concise review summarizes the current knowledge on the interplay between the BM, circulating stem cells, and diabetes, and sets the stages for future developments in the field. Stem Cells 2017;35:106-116.


Bone Marrow Cells/pathology , Clinical Trials as Topic , Diabetes Mellitus/pathology , Diabetes Mellitus/therapy , Stem Cells/pathology , Animals , Cell- and Tissue-Based Therapy , Disease Progression , Humans
20.
FEBS J ; 284(4): 517-524, 2017 02.
Article En | MEDLINE | ID: mdl-27479876

Skeletal muscle regeneration results from the activation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Inflammatory and immune cells have a crucial role in the regeneration process. Acute muscle injury causes an immediate transient wave of neutrophils followed by a more persistent infiltration of M1 (proinflammatory) and M2 (anti-inflammatory/proregenerative) macrophages. New studies show that injured muscle is also infiltrated by a specialized population of regulatory T (Treg) cells, which control both the inflammatory response, by promoting the M1-to-M2 switch, and the activation of satellite cells. Treg cells accumulate in injured muscle in response to specific cytokines, such as IL-33, and promote muscle growth by releasing growth factors, such as amphiregulin. Muscle repair during aging is impaired due to reduced number of Treg cells and can be enhanced by IL-33 supplementation. Migration of Treg cells could also contribute to explain the effect of heterochronic parabiosis, whereby muscle regeneration of aged mice can be improved by a parabiotically linked young partners. In mdx dystrophin-deficient mice, a model of human Duchenne muscular dystrophy, muscle injury, and inflammation is mitigated by expansion of the Treg-cell population but exacerbated by Treg-cell depletion. These findings support the notion that immunological mechanisms are not only essential in the response to pathogenic microbes and tumor cells but also have a wider homeostatic role in tissue repair, and open new perspectives for boosting muscle growth in chronic muscle disease and during aging.


Muscular Dystrophy, Duchenne/immunology , Regeneration/immunology , Satellite Cells, Skeletal Muscle/immunology , T-Lymphocytes, Regulatory/immunology , Aging , Amphiregulin/genetics , Amphiregulin/immunology , Animals , Cell Movement , Gene Expression Regulation , Humans , Interleukin-33/genetics , Interleukin-33/immunology , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Inbred mdx , Muscle Fibers, Skeletal/immunology , Muscle Fibers, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Neutrophils/immunology , Neutrophils/pathology , Satellite Cells, Skeletal Muscle/pathology , T-Lymphocytes, Regulatory/pathology
...