Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14416, 2024 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909091

RESUMEN

The COVID-19 pandemic has profoundly affected all aspects of our lives. Through real-time monitoring and rapid vaccine implementation, we succeeded in suppressing the spread of the disease and mitigating its consequences. Finally, conclusions can be summarized and drawn. Here, we use the example of Poland, which was seriously affected by the pandemic. Compared to other countries, Poland has not achieved impressive results in either testing or vaccination, which may explain its high mortality (case fatality rate, CFR 1.94%). Through retrospective analysis of data collected by the COVID-19 Data Portal Poland, we found significant regional differences in the number of tests performed, number of cases detected, number of COVID-19-related deaths, and vaccination rates. The Masovian, Greater Poland, and Pomeranian voivodeships, the country's leaders in vaccination, reported high case numbers but low death rates. In contrast, the voivodeships in the eastern and southern parts of Poland (Subcarpathian, Podlaskie, Lublin, Opole), which documented low vaccination levels and low case numbers, had higher COVID-19-related mortality rates. The strong negative correlation between the CFR and the percentage of the population that was vaccinated in Poland supports the validity of vaccination. To gain insight into virus evolution, we sequenced more than 500 genomes and analyzed nearly 80 thousand SARS-CoV-2 genome sequences deposited in GISAID by Polish diagnostic centers. We showed that the SARS-CoV-2 variant distribution over time in Poland reflected that in Europe. Haplotype network analysis allowed us to follow the virus transmission routes and identify potential superspreaders in each pandemic wave.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Pandemias , SARS-CoV-2 , Polonia/epidemiología , COVID-19/epidemiología , COVID-19/virología , COVID-19/prevención & control , Humanos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Estudios Retrospectivos , Genoma Viral , Genómica/métodos , Vacunación
2.
J Inflamm Res ; 16: 3949-3965, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37706062

RESUMEN

It is well known that fatigue is a highly disabling symptom commonly observed in inflammatory rheumatic diseases (IRDs). Fatigue is strongly associated with a poor quality of life and seems to be an independent predictor of job loss and disability in patients with different rheumatic diseases. Although the pathogenesis of fatigue remains unclear, indirect data suggest the cooperation of the immune system, the central and autonomic nervous system, and the neuroendocrine system in the induction and sustainment of fatigue in chronic diseases. Fatigue does not correspond with disease activity and its mechanism in IRDs. It is suggested that it may change over time and vary between individuals. Abnormal production of pro-inflammatory cytokines such as interleukin-6 (IL-6), interferons (IFNs), granulocyte-macrophage colony-stimulating factor (GM-CSF), TNF, IL-15, IL-17 play a role in both IRDs and subsequent fatigue development. Some of these cytokines such as IL-6, IFNs, GM-CSF, and common gamma-chain cytokines (IL-15, IL-2, and IL-7) activate the Janus Kinases (JAKs) family of intracellular tyrosine kinases. Therapy blocking JAKs (JAK inhibitors - JAKi) has been recently proven to be an effective approach for IRDs treatment, more efficient in pain reduction than anti-TNF. Therefore, the administration of JAKi to IRDs patients experiencing fatigue may find rational implications as a therapeutic modulator not only of disease inflammatory symptoms but also fatigue with its components like pain and neuropsychiatric features as well. In this review, we demonstrate the latest information on the mechanisms of fatigue in rheumatic diseases and the potential effect of JAKi on fatigue reduction.

3.
Biomed Pharmacother ; 165: 115254, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37542854

RESUMEN

Despite the development of new biological and synthetic targeted therapies, methotrexate remains one of the most commonly used immunomodulatory drugs in rheumatology. However, its effect on the immunogenicity of vaccines has been studied only to a limited extent until recently, resulting in the lack of clear guidelines on the use of methotrexate during vaccination. Significant progress was made during the COVID-19 pandemic due to the dynamic development of research on vaccines, including patients with autoimmune inflammatory rheumatic diseases. In the following literature review, we present a summary of what we know so far on the impact of methotrexate on post-vaccination response in adult rheumatology patients, taking into account the lessons learned from the COVID-19 pandemic. Studies on the effect of methotrexate on the immunogenicity of influenza, pneumococcal, herpes zoster, tetanus/diphtheria/pertussis, hepatitis A, yellow fever, and COVID-19 vaccines are described in detail, including the effect of methotrexate on the humoral and cellular response of individual vaccines. The available evidence for recommendations for withholding methotrexate in the post-vaccination period is presented. Lastly, an overview of potential immunological mechanisms through which MTX modulates the immunogenicity of vaccinations is also provided.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacunas contra la Influenza , Enfermedades Reumáticas , Reumatología , Adulto , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Metotrexato/efectos adversos , Pandemias , Enfermedades Reumáticas/tratamiento farmacológico , Vacunación
4.
Front Immunol ; 14: 980247, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056771

RESUMEN

Introduction: A number of studies have demonstrated a key role of miRNA isolated from cells, tissue or body fluids as disease-specific biomarkers of autoimmune rheumatic diseases including rheumatoid arthritis (RA) and systemic sclerosis (SSc). Also, the expression level of miRNA is changing during disease development, therefore miRNA can be used as biomarkers monitoring RA progression and treatment response. In this study we have investigated the monocytes-specific miRNA that could serve as potential biomarkers of disease progression observed in sera and synovial fluids (SF) in early (eRA) and advanced (aRA) RA and in RA patients before and 3 months after selective JAK inhibitor (JAKi) -baricitinib treatment. Methods: Samples from healthy control (HC) (n=37), RA (n=44) and SSc (n=10) patients were used. MiRNA-seq of HC, RA, and SSc monocytes was performed to find versatile miRNA present in different rheumatic diseases. Selected miRNAs were validated in body fluids in eRA (<2 years disease onset) and aRA (>2 years disease onset) and RA patients receiving baricitinib. Results: Using miRNA-seq, we selected top 6 miRNA out of 95 that were significantly changed in both RA and SSc monocytes compared to HC. To identify circulating miRNA predicting RA progression, these 6 miRNA were measured in eRA and aRA sera and SF. Interestingly, miRNA (-19b-3p, -374a-5p, -3614-5p) were significantly increased in eRA sera vs HC and even further upregulated in SF vs aRA sera. In contrast, miRNA-29c-5p was significantly reduced in eRA sera vs HC and even further decreased in SF vs aRA sera. Kegg pathway analysis predicted that miRNA were involved in inflammatory-mediated pathways. ROC analysis demonstrated that miRNA-19b-3p (AUC=0.85, p=0.04) can be used as biomarker predicting JAKi response. Discussion: In conclusion, we identified and validated miRNA candidates which were present simultaneously in monocytes, sera, SF and that can be used as biomarkers predicting joint inflammation and monitoring therapy response to JAKi in RA patients.


Asunto(s)
Artritis Reumatoide , MicroARN Circulante , MicroARNs , Esclerodermia Sistémica , Humanos , Monocitos/metabolismo , MicroARNs/metabolismo , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Biomarcadores , Progresión de la Enfermedad
5.
Viruses ; 15(3)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36992329

RESUMEN

Impaired immunogenicity of COVID-19 vaccinations in inflammatory arthritis (IA) patients results in diminished immunity. However, optimal booster vaccination regimens are still unknown. Therefore, this study aimed to assess the kinetics of humoral and cellular responses in IA patients after the COVID-19 booster. In 29 IA patients and 16 healthy controls (HC), humoral responses (level of IgG antibodies) and cellular responses (IFN-γ production) were assessed before (T0), after 4 weeks (T1), and after more than 6 months (T2) from the booster vaccination with BNT162b2. IA patients, but not HC, showed lower anti-S-IgG concentration and IGRA fold change at T2 compared to T1 (p = 0.026 and p = 0.031). Furthermore, in IA patients the level of cellular response at T2 returned to the pre-booster level (T0). All immunomodulatory drugs, except IL-6 and IL-17 inhibitors for the humoral and IL-17 inhibitors for the cellular response, impaired the immunogenicity of the booster dose at T2. Our study showed impaired kinetics of both humoral and cellular responses after the booster dose of the COVID-19 vaccine in IA patients, which, in the case of cellular response, did not allow the vaccination effect to be maintained for more than 6 months. Repetitive vaccination with subsequent booster doses seems to be necessary for IA patients.


Asunto(s)
Artritis , COVID-19 , Humanos , Vacunas contra la COVID-19 , Vacuna BNT162 , Interleucina-17 , COVID-19/prevención & control , Inmunoglobulina G , Vacunación , Anticuerpos Antivirales
6.
J Inflamm Res ; 15: 6813-6829, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36578517

RESUMEN

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease with systemic inflammation finally resulting in damaged joints. One of the RA development models suggests bone marrow (BM) as a place of inflammation development further leading to disease progression. We aimed to investigate the potential of CTLA-4-Fc molecule in inducing tolerogenic milieu in BM measured as indoleamine 2,3-dioxygenase (IDO) expression, CD4+Foxp3+ Treg induction, and T cell activation control. The expression of IDO-pathway genes was also examined in monocytes to estimate the tolerogenic potential in the periphery. Methods: Bone marrow mononuclear cells (BMMC) were stimulated by pro-inflammatory cytokines and CTLA-4-Fc. Next IDO expression, CD4+CD69+ and CD4+Foxp3+ percentage were estimated by PCR and FACS staining, respectively. Enzymatic activity of IDO was confirmed by HPLC in BM plasma and blood plasma. Genes expressed in IDO-pathway were analyzed by NGS in peripheral monocytes isolated from RA patients and healthy controls. Results: We found that CTLA-4-Fc and IFN-γ stimulation results in IDO production by BMMC. CTLA-4-Fc induced tryptophan catabolism can inhibit mitogen-induced CD4+ T cells activation without influencing CD8+ cells, but did not control CD25 nor Foxp3 expression in BM cells. Significantly higher expression of selected IDO-pathway genes was detected on peripheral monocytes isolated from RA as compared to healthy controls. Conclusion: This study sheds light on some immunosuppression aspects present or induced in BM. The potential of IDO-mediated pathways were confirmed in the periphery, what may represent the promising candidates for therapeutic strategies in RA.

7.
Front Immunol ; 13: 1033804, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389719

RESUMEN

Introduction: Previous studies have shown a reduction in the effectiveness of primary COVID-19 vaccination in patients with rheumatic diseases. However, limited data is available regarding the effectiveness of the COVID-19 vaccine booster dose, especially on cellular response. The study aimed to assess the humoral and cellular immunogenicity of a booster dose in patients with inflammatory arthritis (IA). Patients and methods: 49 IA and 47 age and sex-matched healthy controls (HC) were included in a prospective cohort study. Both groups completed primary COVID-19 vaccination and after more than 180 days received a BNT162b2 booster shot. Humoral responses (level of IgG antibodies) and cellular responses (IFN-γ production) were assessed before and after 4 weeks from the booster dose of the vaccine. Results: After the booster dose, all participants showed an increased humoral response, although significantly reduced antibody levels were observed in IA patients compared to HC (p=0.004). The cellular response was significantly lower both before (p<0.001) and after (p<0.001) the booster dose in IA patients as compared to HC. Among the immunomodulatory drugs, only biological and targeted synthetic drugs lowered the humoral response after booster vaccination. However, the cellular response was decreased after all immunomodulatory drugs except IL-17 inhibitors and sulfasalazine. Conclusion: Our data indicate that patients with rheumatic diseases present lower humoral and cellular responses after the COVID-19 booster vaccine in comparison to HC. This may translate into a recommendation for subsequent booster doses of the COVID-19 vaccine for rheumatic patients.


Asunto(s)
Artritis , COVID-19 , Enfermedades Reumáticas , Humanos , Inmunización Secundaria , Vacunas contra la COVID-19 , Estudios Prospectivos , Vacuna BNT162 , COVID-19/prevención & control , Vacunación
8.
Int J Mol Sci ; 23(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35628127

RESUMEN

Complex pathogenesis of systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) is associated with an imbalance of various Th-cell subpopulations. Mesenchymal stem cells (MSCs) have the ability to restore this balance. However, bone marrow-derived MSCs of SLE and SSc patients exhibit many abnormalities, whereas the properties of adipose derived mesenchymal stem cells (ASCS) are much less known. Therefore, we examined the effect of ASCs obtained from SLE (SLE/ASCs) and SSc (SSc/ASCs) patients on Th subset differentiation, using cells from healthy donors (HD/ASCs) as controls. ASCs were co-cultured with activated CD4+ T cells or peripheral blood mononuclear cells. Expression of transcription factors defining Th1, Th2, Th17, and regulatory T cell (Tregs) subsets, i.e., T-bet, GATA3, RORc, and FoxP3, were analysed by quantitative RT-PCR, the concentrations of subset-specific cytokines were measured by ELISA, and Tregs formation by flow cytometry. Compared with HD/ASCs, SLE/ASCs and especially SSc/ASCs triggered Th differentiation which was disturbed at the transcription levels of genes encoding Th1- and Tregs-related transcription factors. However, we failed to find functional consequences of this abnormality, because all tested ASCs similarly switched differentiation from Th1 to Th2 direction with accompanying IFNγ/IL-4 ratio decrease, up-regulated Th17 formation and IL-17 secretion, and up-regulated classical Tregs generation.


Asunto(s)
Lupus Eritematoso Sistémico , Células Madre Mesenquimatosas , Enfermedades Reumáticas , Esclerodermia Sistémica , Tejido Adiposo/metabolismo , Diferenciación Celular , Humanos , Leucocitos Mononucleares , Lupus Eritematoso Sistémico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Enfermedades Reumáticas/metabolismo , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/metabolismo
9.
Biomedicines ; 10(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35453643

RESUMEN

This study aimed to investigate the associations of microRNA (miRs) signatures with cytokines, serum lipids, and disease activity in patients with psoriatic arthritis (PsA), ankylosing spondylitis (AS), and rheumatoid arthritis (RA). In total, 65 patients (PsA n = 25, AS n = 25, RA n = 15) and 25 healthy controls (HC) were enrolled into the study. The expression of miR-223-5p, miR-92b-3p, miR-485-3p, miR-10b-5p, let-7d-5p, miR-26a-2-3p, miR-146b-3p, and cytokines levels were measured in sera. DIANA-mirPath analysis was used to predict pathways targeted by the dysregulated miRs. Disease activity scores were calculated. Lipid profile, uric acid, glucose level, and C-reactive protein (CRP) concentrations were determined in the blood. Based on lipid profiles, the PsA group had hypertriglyceridaemia, and RA patients revealed mixed dyslipidaemia, while in AS, no specific changes were found. miR expression analysis revealed upregulation of miR-26a-2-3p and miR-10b-5p in PsA, miR-485-3p in AS, and let-7d-5p in RA. Several correlations between disease activity indexes, metabolites levels, and expression of miRs were observed in PsA, RA, and AS patients. Finally, in ROC analysis, miR-26a-2-3p/miR-485-3p, and let-7d-5p/miR-146b-3p tandems revealed high sensitivity and specificity in distinguishing between PsA, AS, and RA. Our study illustrates the superiority of miR expressions in distinguishing between RA, PsA, and AS. In PsA, a unique regulatory pathway exists through miR-26a-2-3p, miR-223-5p, miR-10b-5p, and miR-92b-3p that converges proatherogenic metabolism and disease activity.

10.
RSC Adv ; 12(7): 4016-4028, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35425452

RESUMEN

The biomaterial-cells interface is one of the most fundamental issues in tissue regeneration. Despite many years of scientific work, there is no clear answer to what determines the desired adhesion of cells and the synthesis of ECM proteins. Crystallinity is a characteristic of the structure that influences the surface and bulk properties of semicrystalline polymers used in medicine. The crystallinity of polycaprolactone (PCL) was varied by changing the molecular weight of the polymer and the annealing procedure. Measurements of surface free energy showed differences related to substrate crystallinity. Additionally, the water contact angle was determined to characterise surface wettability which was crucial in the analysis of protein absorption. X-ray photoelectron spectroscopy was used to indicate oxygen bonds amount on the surface. Finally, the impact of the crystallinity, and related properties were demonstrated on dermal fibroblasts' response. Cellular proliferation and expression of selected genes: α-SMA, collagen I, TIMP, integrin were analysed.

11.
Int J Mol Sci ; 24(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36614150

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease that is still not well understood in terms of its pathogenesis and presents diagnostic and therapeutic challenges. Monocytes are key players in initiating and maintaining inflammation through the production of pro-inflammatory cytokines and S100 proteins in RA. This study aimed to test a specific DNA methylation inhibitor (RG108) and activator (budesonide) in the regulation of pro-inflammatory mediators-especially the S100 proteins. We also searched for new biomarkers of high disease activity in RA patients. RNA sequencing analysis of healthy controls (HCs) and RA monocytes was performed. Genes such as the S100 family, TNF, and IL-8 were validated by qRT-PCR following DNA-methylation-targeted drug treatment in a monocytic THP-1 cell line. The concentrations of the S100A8, S100A11, and S100A12 proteins in the sera and synovial fluids of RA patients were tested and correlated with clinical parameters. We demonstrated that RA monocytes had significantly increased levels of S100A8, S100A9, S100A11, S100A12, MYD88, JAK3, and IQGAP1 and decreased levels of IL10RA and TGIF1 transcripts. In addition, stimulation of THP-1 cells with budesonide statistically reduced the expression of the S100 family, IL-8, and TNF genes. In contrast, THP-1 cells treated with RG108 had increased levels of the S100 family and TNF genes. We also revealed a significant upregulation of S100A8, S100A11, and S100A12 in RA patients, especially in early RA compared to HC sera. In addition, protein levels of S100A8, S100A11, and S100A12 in RA synovial fluids compared to HC sera were significantly increased. Overall, our data suggest that the S100A8 and S100A12 proteins are strongly elevated during ongoing inflammation, so they could be used as a better biomarker of disease activity than CRP. Interestingly, epigenetic drugs can regulate these S100 proteins, suggesting their potential use in targeting RA inflammation.


Asunto(s)
Artritis Reumatoide , Proteína S100A12 , Humanos , Proteína S100A12/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Proteínas S100/metabolismo , Inflamación/metabolismo , Biomarcadores , Budesonida/uso terapéutico , Epigénesis Genética , Proteínas Represoras/metabolismo , Proteínas de Homeodominio/metabolismo
12.
Cells ; 10(8)2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34440629

RESUMEN

Monocytes/macrophages play a central role in chronic inflammatory disorders, including rheumatoid arthritis (RA). Activation of these cells results in the production of various mediators responsible for inflammation and RA pathogenesis. On the other hand, the depletion of macrophages using specific antibodies or chemical agents can prevent their synovial tissue infiltration and subsequently attenuates inflammation. Their plasticity is a major feature that helps the switch from a pro-inflammatory phenotype (M1) to an anti-inflammatory state (M2). Therefore, understanding the precise strategy targeting pro-inflammatory monocytes/macrophages should be a powerful way of inhibiting chronic inflammation and bone erosion. In this review, we demonstrate potential consequences of different epigenetic regulations on inflammatory cytokines production by monocytes. In addition, we present unique profiles of monocytes/macrophages contributing to identification of new biomarkers of disease activity or predicting treatment response in RA. We also outline novel approaches of tuning monocytes/macrophages by biologic drugs, small molecules or by other therapeutic modalities to reduce arthritis. Finally, the importance of cellular heterogeneity of monocytes/macrophages is highlighted by single-cell technologies, which leads to the design of cell-specific therapeutic protocols for personalized medicine in RA in the future.


Asunto(s)
Antirreumáticos/uso terapéutico , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Medicina de Precisión , Análisis de la Célula Individual , Animales , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Biomarcadores/metabolismo , Citocinas/genética , Citocinas/metabolismo , Epigénesis Genética , Humanos , Mediadores de Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Fenotipo , Valor Predictivo de las Pruebas , RNA-Seq
13.
Rheumatology (Oxford) ; 60(11): 5424-5435, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34009317

RESUMEN

OBJECTIVE: To explore global miRNA and transcriptomic profiling of monocytes from RA patients compared with healthy controls in order to predict which aberrantly expressed miRNA can negatively modulate inflammatory molecules. METHODS: Using next-generation sequencing, we have performed simultaneous global analysis of miRNA (miRNA-seq) and transcriptome (RNA-seq) of monocytes from RA patients and healthy controls. Global analysis of miRNA of SSc monocytes was also performed. Following differential analysis and negative correlation, miRNA-RNA pairs were selected. RESULTS: We found that 20 specific miRNA candidates are predicted to silence inflammatory mediators, out of 191 significantly changed miRNAs in RA monocytes. Based on the highest scoring in terms of negative correlation (r = -0.97, P = 1.75e-07, false discovery rate = 0.04) and the number of seeds in miRNA responsible for negative regulation, we selected miRNA-146b and its target gene anti-inflammatory retinoic acid receptor alpha (RARA). Similarly to next-generation sequencing, qPCR analysis also confirmed negative correlation between miRNA-146b and RARA expression (r = -0.45, P = 0.04). Additionally, miRNA-146b expression in RA monocytes significantly correlated with clinical parameters including DAS28 for RA with CRP (DAS28-CRP) and ESR (DAS28-ESR), whereas overexpression of miRNA-146b was able to functionally reduce RARA expression in the human monocytic cell line THP-1. Finally, circulating miRNA-146b expression in sera and SFs was significantly elevated in RA patients. CONCLUSIONS: Overall, in this study we have identified a new miRNA-146b candidate that is predicted to negatively regulate the anti-inflammatory RARA transcript, whereas circulating miRNA-146b level can be used as a biomarker predicting pro-inflammatory RA progression and disease activity.


Asunto(s)
Artritis Reumatoide/metabolismo , MicroARNs/sangre , Monocitos/metabolismo , Estudios de Casos y Controles , Línea Celular , Progresión de la Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Receptor alfa de Ácido Retinoico/genética , Líquido Sinovial/metabolismo , Transcriptoma
14.
Cells ; 10(2)2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33557301

RESUMEN

Rheumatoid arthritis (RA) affects around 1.2% of the adult population. RA is one of the main reasons for work disability and premature retirement, thus substantially increasing social and economic burden. Biological disease-modifying antirheumatic drugs (bDMARDs) were shown to be an effective therapy especially in those rheumatoid arthritis (RA) patients, who did not adequately respond to conventional synthetic DMARD therapy. However, despite the proven efficacy, the high cost of the therapy resulted in limitation of the widespread use and unequal access to the care. The introduction of biosimilars, which are much cheaper relative to original drugs, may facilitate the achievement of the therapy by a much broader spectrum of patients. In this review we present the properties of original biologic agents based on cytokine-targeted (blockers of TNF, IL-6, IL-1, GM-CSF) and cell-targeted therapies (aimed to inhibit T cells and B cells properties) as well as biosimilars used in rheumatology. We also analyze the latest update of bDMARDs' possible influence on DNA methylation, miRNA expression and histone modification in RA patients, what might be the important factors toward precise and personalized RA treatment. In addition, during the COVID-19 outbreak, we discuss the usage of biologicals in context of effective and safe COVID-19 treatment. Therefore, early diagnosing along with therapeutic intervention based on personalized drugs targeting disease-specific genes is still needed to relieve symptoms and to improve the quality of life of RA patients.


Asunto(s)
Antirreumáticos , Artritis Reumatoide/tratamiento farmacológico , Biosimilares Farmacéuticos/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Reposicionamiento de Medicamentos , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Epigénesis Genética , Humanos
15.
Cells ; 9(8)2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32796683

RESUMEN

The development of biological disease-modifying antirheumatic drugs (bDMARDs) and target synthetic DMARDs (tsDMARDs), also known as small molecule inhibitors, represent a breakthrough in rheumatoid arthritis (RA) treatment. The tsDMARDs are a large family of small molecules targeting mostly the several types of kinases, which are essential in downstream signaling of pro-inflammatory molecules. This review highlights current challenges associated with the treatment of RA using small molecule inhibitors targeting intracellular JAKs/MAPKs/NF-κB/SYK-BTK signaling pathways. Indeed, we have provided the latest update on development of small molecule inhibitors, their clinical efficacy and safety as a strategy for RA treatment. On the other hand, we have highlighted the risk and adverse effects of tsDMARDs administration including, among others, infections and thromboembolism. Therefore, performance of blood tests or viral infection screening should be recommended before the tsDMARDs administration. Interestingly, recent events of SARS-CoV-2 outbreak have demonstrated the potential use of small molecule inhibitors not only in RA treatment, but also in fighting COVID-19 via blocking the viral entry, preventing of hyperimmune activation and reducing cytokine storm. Thus, small molecule inhibitors, targeting wide range of pro-inflammatory singling pathways, may find wider implications not only for the management of RA but also in the controlling of COVID-19.


Asunto(s)
Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Betacoronavirus/fisiología , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Animales , Betacoronavirus/efectos de los fármacos , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Citocinas/inmunología , Citocinas/metabolismo , Quimioterapia Combinada , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Ratones , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
16.
Eur J Immunol ; 50(7): 1057-1066, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32087087

RESUMEN

Dysregulation in type I IFN and IFN-stimulated genes (ISGs) induced by monocytes is one of the key features of systemic sclerosis (SSc) pathogenesis. Abnormalities in microRNA (miRNA) expression are related to excessive IFN production, however the role of miRNA remains largely elusive in SSc monocytes. This study explores global miRNA-mRNA profiling of SSc monocytes and functional attenuation of IFN and ISGs by specific miRNAs. Global sequencing of mRNA (mRNA-seq) and miRNA (miRNA-seq) samples were performed simultaneously on healthy controls and SSc monocytes. Following computational analysis, selected miRNAs-mRNA candidates were validated, correlated with clinical parameters, and tested by functional assays. Transcriptomics data and qPCR analysis confirmed IFN signature in SSc but not in rheumatoid arthritis monocytes. Based on miRNA-seq analysis, five miRNAs were selected for further validation. Only the expression patterns of miRNA-26a-2-3p and miRNA-485-3p were confirmed and negatively correlated with clinical parameters. Exogenous delivery of miRNA-26a-2-3p to TLR-stimulated monocytic THP-1 cells specifically inhibited ISGs but not inflammasome activity in functional assays. In conclusion, our miRNA-mRNA co-sequencing and functional analysis identify miRNA-26a-2-3p as a new candidate, which is predicated to negatively regulate ISGs. This implies that reduced expression of miRNA-26a-2-3 may be involved in pathogenic IFN signature in SSc monocytes.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Interferones/inmunología , MicroARNs/inmunología , Monocitos/inmunología , ARN Mensajero/inmunología , Esclerodermia Sistémica/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerodermia Sistémica/patología , Células THP-1
17.
Cells ; 8(9)2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443448

RESUMEN

Rheumatoid arthritis (RA) is a long-term autoimmune disease of unknown etiology that leads to progressive joint destruction and ultimately to disability. RA affects as much as 1% of the population worldwide. To date, RA is not a curable disease, and the mechanisms responsible for RA development have not yet been well understood. The development of more effective treatments and improvements in the early diagnosis of RA is direly needed to increase patients' functional capacity and their quality of life. As opposed to genetic mutation, epigenetic changes, such as DNA methylation, are reversible, making them good therapeutic candidates, modulating the immune response or aggressive synovial fibroblasts (FLS-fibroblast-like synoviocytes) activity when it is necessary. It has been suggested that DNA methylation might contribute to RA development, however, with insufficient and conflicting results. Besides, recent studies have shown that circulating cell-free methylated DNA (ccfDNA) in blood offers a very convenient, non-invasive, and repeatable "liquid biopsy", thus providing a reliable template for assessing molecular markers of various diseases, including RA. Thus, epigenetic therapies controlling autoimmunity and systemic inflammation may find wider implications for the diagnosis and management of RA. In this review, we highlight current challenges associated with the treatment of RA and other autoimmune diseases and discuss how targeting DNA methylation may improve diagnostic, prognostic, and therapeutic approaches.


Asunto(s)
Artritis Reumatoide/diagnóstico , Artritis Reumatoide/tratamiento farmacológico , Metilación de ADN/efectos de los fármacos , Animales , Artritis Reumatoide/genética , Metilación de ADN/genética , Humanos
18.
Arch Immunol Ther Exp (Warsz) ; 66(5): 389-397, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29744553

RESUMEN

In this study, we analysed the expression level of sera circulating miRNA-5196 in rheumatoid arthritis (RA) and ankylosing spondylitis (AS) patients before and after tumor necrosis factor (TNF)-α therapy as biomarkers predicting positive treatment outcome. We enrolled 10 RA patients, 13 AS patients, and 12 healthy individuals in the study. The expression of miRNA-5196 was measured by real-time polymerase chain reaction before and after anti-TNF-α therapy. Disease activity of RA patients was assessed using disease activity score 28 (DAS28), whereas ankylosing spondylitis DAS (ASDAS) was used in AS patients. MiRNA-5196 expression was significantly higher in patients with RA and AS before TNF-α therapy than in those following anti-TNF-α therapy and healthy controls. Changes in miRNA-5196 expression positively correlated with delta DAS28 or delta ASDAS, respectively, following TNF-α therapy. In contrast, changes in C-reactive protein (CRP) levels in RA and AS patients did not positively correlate with DAS28 or ASDAS changes. Receiver-operating characteristic analysis showed better diagnostic accuracy of miRNA-5196 expression both in RA (area under curve (AUC) = 0.87, p = 0.055) and AS patients (AUC = 0.90, p = 0.050) compared to CRP levels in RA (AUC = 0.75, p = 0.201) and AS patients (AUC = 0.85, p = 0.086) upon biologic therapy treatment. Finding novel biomarkers, including miRNA-5196 which allow to predict and monitor anti-TNF-α response, would be of clinical value especially during the early phase of RA or AS development.


Asunto(s)
Antirreumáticos/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Espondilitis Anquilosante/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Adulto , Anciano , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Antirreumáticos/farmacología , Artritis Reumatoide/sangre , Artritis Reumatoide/genética , Biomarcadores/sangre , Proteína C-Reactiva/análisis , Femenino , Humanos , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Espondilitis Anquilosante/sangre , Espondilitis Anquilosante/genética
19.
Immunol Lett ; 195: 45-54, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29106987

RESUMEN

Systemic Sclerosis (SSc) is an autoimmune disease characterised by vasculopathy, uncontrolled inflammation and enhanced fibrosis which can subsequently lead to the loss of organ function or even premature death. Interferons (IFNs) are pleiotropic cytokines that are critical not only in mounting an effective immune response against viral and bacterial infections but also strongly contribute to the pathogenesis of SSc. Furthermore, elevated levels of IFNs are found in SSc patients and correlate with skin thickness and disease activity suggesting potential role of IFNs as biomarkers. In this review, we summarise existing knowledge regarding all types of IFNs and IFN-inducible genes in the pathogenesis of SSc. We then argue why IFN-blocking strategies are promising therapeutic targets in SSc and other autoimmune diseases.


Asunto(s)
Vasos Sanguíneos/patología , Inmunoterapia/métodos , Interferones/inmunología , Esclerodermia Sistémica/terapia , Piel/patología , Animales , Fibrosis , Humanos , Interferones/uso terapéutico , Terapia Molecular Dirigida , Esclerodermia Sistémica/inmunología , Transducción de Señal
20.
Eur J Clin Invest ; 47(8): 555-564, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28639412

RESUMEN

BACKGROUND: Systemic sclerosis (SSc) is a chronic autoimmune disease characterised by tissue fibrosis and immune abnormalities. Recent evidence suggests that activated circulating monocytes from patients with SSc play an important role in early stages of SSc pathogenesis due to enhanced expression of tissue inhibitor of metalloproteinases 1 (TIMP-1), IL-8 and reactive oxygen species (ROS) induction. However, the exact factors that contribute to chronic inflammation and subsequently fibrosis progression are still unknown. MATERIALS AND METHODS: The expression pattern of IL-8, TIMP-1, AP-1 transcription factor-Fra2 and ROS induction in peripheral blood monocytes following DZNep (histone methyltransferase inhibitor) and TLR8 agonist stimulation was investigated. Exogenous microRNA-5196, which is predicted to bind 3'UTR of Fra2 gene, was delivered to reverse profibrotic phenotype in monocytes. Expression of circulating microRNA-5196 was correlated with SSc parameters. RESULTS: DZNep + TLR8 agonist stimulation enhanced profibrotic TIMP-1, IL-8 and ROS generation in HC and SSc monocytes. As opposed by the decrease of miRNA-5196 and antioxidant SOD1 expression in SSc monocytes. Exogenous delivery of microRNA-5196 reduced Fra2 and TIMP-1 expression suggesting that it may be used as a potential modulator of fibrogenesis in SSc. Circulating microRNA-5196 was significantly increased in SSc and positively correlated with CRP level but not with Rodnan skin score or ESR. CONCLUSIONS: These results suggest that microRNA-5196 can be used as a potential biomarker characterising SSc. Overall, this study may open new possibilities for the development of microRNA-5196-based diagnostics and therapy in early phases of SSc.


Asunto(s)
MicroARNs/metabolismo , Esclerodermia Sistémica/etiología , Adenosina/análogos & derivados , Adenosina/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Estudios de Casos y Controles , Femenino , Antígeno 2 Relacionado con Fos/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Interleucina-8/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , Metaloproteinasas de la Matriz/metabolismo , MicroARNs/fisiología , Persona de Mediana Edad , Estrés Oxidativo/fisiología , Péptidos Cíclicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Receptor Toll-Like 8/antagonistas & inhibidores , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA