Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Enzymes ; 54: 221-245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37945173

RESUMEN

Proteins are the most structurally diverse cellular biomolecules that act as molecular machines driving essential activities of all living organisms. To be functional, most of the proteins need to fold into a specific three-dimensional structure, which on one hand should be stable enough to oppose disruptive conditions and on the other hand flexible enough to allow conformational dynamics necessary for their biological functions. This compromise between stability and dynamics makes proteins susceptible to stress-induced misfolding and aggregation. Moreover, the folding process itself is intrinsically prone to conformational errors. Molecular chaperones are proteins that mitigate folding defects and maintain the structural integrity of the cellular proteome. Promiscuous Hsp70 chaperones are central to these processes and their activity depends on the interaction with obligatory J-domain protein (JDP) partners. In this review, we discuss structural aspects of Hsp70s, JDPs, and their interaction in the context of biological activities.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Chaperonas Moleculares , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Humanos
2.
Nucleic Acids Res ; 51(4): 1750-1765, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36744436

RESUMEN

Many replicative DNA polymerases couple DNA replication and unwinding activities to perform strand displacement DNA synthesis, a critical ability for DNA metabolism. Strand displacement is tightly regulated by partner proteins, such as single-stranded DNA (ssDNA) binding proteins (SSBs) by a poorly understood mechanism. Here, we use single-molecule optical tweezers and biochemical assays to elucidate the molecular mechanism of strand displacement DNA synthesis by the human mitochondrial DNA polymerase, Polγ, and its modulation by cognate and noncognate SSBs. We show that Polγ exhibits a robust DNA unwinding mechanism, which entails lowering the energy barrier for unwinding of the first base pair of the DNA fork junction, by ∼55%. However, the polymerase cannot prevent the reannealing of the parental strands efficiently, which limits by ∼30-fold its strand displacement activity. We demonstrate that SSBs stimulate the Polγ strand displacement activity through several mechanisms. SSB binding energy to ssDNA additionally increases the destabilization energy at the DNA junction, by ∼25%. Furthermore, SSB interactions with the displaced ssDNA reduce the DNA fork reannealing pressure on Polγ, in turn promoting the productive polymerization state by ∼3-fold. These stimulatory effects are enhanced by species-specific functional interactions and have significant implications in the replication of the human mitochondrial DNA.


Asunto(s)
ADN Polimerasa gamma , Replicación del ADN , Proteínas de Unión al ADN , Humanos , ADN Polimerasa gamma/metabolismo , ADN de Cadena Simple , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo
3.
Biosci Rep ; 42(11)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36254835

RESUMEN

All 37 mitochondrial DNA (mtDNA)-encoded genes involved with oxidative phosphorylation and intramitochondrial protein synthesis, and several nuclear-encoded genes involved with mtDNA replication, transcription, repair and recombination are conserved between the fruit fly Drosophila melanogaster and mammals. This, in addition to its easy genetic tractability, has made Drosophila a useful model for our understanding of animal mtDNA maintenance and human mtDNA diseases. However, there are key differences between the Drosophila and mammalian systems that feature the diversity of mtDNA maintenance processes inside animal cells. Here, we review what is known about mtDNA maintenance in Drosophila, highlighting areas for which more research is warranted and providing a perspective preliminary in silico and in vivo analyses of the tissue specificity of mtDNA maintenance processes in this model organism. Our results suggest new roles (or the lack thereof) for well-known maintenance proteins, such as the helicase Twinkle and the accessory subunit of DNA polymerase γ, and for other Drosophila gene products that may even aid in shedding light on mtDNA maintenance in other animals. We hope to provide the reader some interesting paths that can be taken to help our community show how Drosophila may impact future mtDNA maintenance research.


Asunto(s)
ADN Mitocondrial , Proteínas de Drosophila , Animales , Humanos , ADN Mitocondrial/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/metabolismo , Proteínas de Drosophila/metabolismo , Replicación del ADN/genética , Proteínas Mitocondriales/genética , Mamíferos/metabolismo
4.
Front Genet ; 12: 790521, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950192

RESUMEN

Recent evidence suggests that iron-sulfur clusters (ISCs) in DNA replicative proteins sense DNA-mediated charge transfer to modulate nuclear DNA replication. In the mitochondrial DNA replisome, only the replicative DNA helicase (mtDNA helicase) from Drosophila melanogaster (Dm) has been shown to contain an ISC in its N-terminal, primase-like domain (NTD). In this report, we confirm the presence of the ISC and demonstrate the importance of a metal cofactor in the structural stability of the Dm mtDNA helicase. Further, we show that the NTD also serves a role in membrane binding. We demonstrate that the NTD binds to asolectin liposomes, which mimic phospholipid membranes, through electrostatic interactions. Notably, membrane binding is more specific with increasing cardiolipin content, which is characteristically high in the mitochondrial inner membrane (MIM). We suggest that the N-terminal domain of the mtDNA helicase interacts with the MIM to recruit mtDNA and initiate mtDNA replication. Furthermore, Dm NUBPL, the known ISC donor for respiratory complex I and a putative donor for Dm mtDNA helicase, was identified as a peripheral membrane protein that is likely to execute membrane-mediated ISC delivery to its target proteins.

5.
Mitochondrion ; 61: 147-158, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34619353

RESUMEN

The COVID-19 pandemic prompted the FDA to authorize a new nucleoside analogue, remdesivir, for emergency use in affected individuals. We examined the effects of its active metabolite, remdesivir triphosphate (RTP), on the activity of the replicative mitochondrial DNA polymerase, Pol γ. We found that while RTP is not incorporated by Pol γ into a nascent DNA strand, it remains associated with the enzyme impeding its synthetic activity and stimulating exonucleolysis. In spite of that, we found no evidence for deleterious effects of remdesivir treatment on the integrity of the mitochondrial genome in human cells in culture.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Tratamiento Farmacológico de COVID-19 , ADN Polimerasa gamma/metabolismo , Replicación del ADN/efectos de los fármacos , ADN Mitocondrial/biosíntesis , Fibroblastos/metabolismo , SARS-CoV-2 , Adenosina Monofosfato/farmacología , Alanina/farmacología , COVID-19/metabolismo , Células Cultivadas , Humanos
6.
Front Genet ; 12: 721864, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539752

RESUMEN

The maintenance of the mitochondrial genome depends on a suite of nucleus-encoded proteins, among which the catalytic subunit of the mitochondrial replicative DNA polymerase, Pol γα, plays a pivotal role. Mutations in the Pol γα-encoding gene, POLG, are a major cause of human mitochondrial disorders. Here we present a study of direct and functional interactions of Pol γα with the mitochondrial single-stranded DNA-binding protein (mtSSB). mtSSB coordinates the activity of the enzymes at the DNA replication fork. However, the mechanism of this functional relationship is elusive, and no direct interactions between the replicative factors have been identified to date. This contrasts strikingly with the extensive interactomes of SSB proteins identified in other homologous replication systems. Here we show for the first time that mtSSB binds Pol γα directly, in a DNA-independent manner. This interaction is strengthened in the absence of the loop 2.3 structure in mtSSB, and is abolished upon preincubation with Pol γß. Together, our findings suggest that the interaction between mtSSB and polymerase gamma holoenzyme (Pol γ) involves a balance between attractive and repulsive affinities, which have distinct effects on DNA synthesis and exonucleolysis.

7.
Methods Mol Biol ; 2281: 1-21, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33847949

RESUMEN

Maintenance of genomes is fundamental for all living organisms. The diverse processes related to genome maintenance entail the management of various intermediate structures, which may be deleterious if unresolved. The most frequent intermediate structures that result from the melting of the DNA duplex are single-stranded (ss) DNA stretches. These are thermodynamically less stable and can spontaneously fold into secondary structures, which may obstruct a variety of genome processes. In addition, ssDNA is more prone to breaking, which may lead to the formation of deletions or DNA degradation. Single-stranded DNA-binding proteins (SSBs) bind and stabilize ssDNA, preventing the abovementioned deleterious consequences and recruiting the appropriate machinery to resolve that intermediate molecule. They are present in all forms of life and are essential for their viability, with very few exceptions. Here we present an introductory chapter to a volume of the Methods in Molecular Biology dedicated to SSBs, in which we provide a general description of SSBs from various taxa.


Asunto(s)
ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/genética , Genes Esenciales , Modelos Moleculares , Conformación Molecular
8.
Methods Mol Biol ; 2281: 265-272, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33847964

RESUMEN

The mitochondrial single-stranded DNA-binding protein (mtSSB) regulates the function of the mitochondrial DNA (mtDNA) replisome. In vitro, mtSSB stimulates the activity of enzymatic components of the replisome, namely mtDNA helicase and DNA polymerase gamma (Pol γ). We have demonstrated that the stimulatory properties of mtSSB result from its ability to organize the single-stranded DNA template in a specific manner. Here we present methods employing electron microscopy and enzymatic assays to characterize and classify the mtSSB-DNA complexes and their effects on the activity of Pol γ.


Asunto(s)
ADN Polimerasa gamma/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/metabolismo , ADN de Cadena Simple/química , Pruebas de Enzimas , Humanos , Microscopía Electrónica , Conformación Molecular , Nucleoproteínas/química
9.
J Biochem ; 168(5): 515-533, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32589740

RESUMEN

In eukaryotes, ribonuclease H1 (RNase H1) is involved in the processing and removal of RNA/DNA hybrids in both nuclear and mitochondrial DNA. The enzyme comprises a C-terminal catalytic domain and an N-terminal hybrid-binding domain (HBD), separated by a linker of variable length, 115 amino acids in Drosophila melanogaster (Dm). Molecular modelling predicted this extended linker to fold into a structure similar to the conserved HBD. Based on a deletion series, both the catalytic domain and the conserved HBD were required for high-affinity binding to heteroduplex substrates, while loss of the novel HBD led to an ∼90% drop in Kcat with a decreased KM, and a large increase in the stability of the RNA/DNA hybrid-enzyme complex, supporting a bipartite-binding model in which the second HBD facilitates processivity. Shotgun proteomics following in vivo cross-linking identified single-stranded DNA-binding proteins from both nuclear and mitochondrial compartments, respectively RpA-70 and mtSSB, as prominent interaction partners of Dm RNase H1. However, we were not able to document direct and stable interactions with mtSSB when the proteins were co-overexpressed in S2 cells, and functional interactions between them in vitro were minor.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Ribonucleasa H/metabolismo , Animales , Dominio Catalítico , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Modelos Moleculares , Unión Proteica , Ribonucleasa H/química , Ribonucleasa H/genética , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Especificidad por Sustrato
10.
Genet Mol Biol ; 43(1 suppl. 1): e20190069, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32141473

RESUMEN

Mitochondrial DNA (mtDNA) deletions are a common cause of human mitochondrial diseases. Mutations in the genes encoding components of the mitochondrial replisome, such as DNA polymerase gamma (Pol γ) and the mtDNA helicase Twinkle, have been associated with the accumulation of such deletions and the development of pathological conditions in humans. Recently, we demonstrated that changes in the level of wild-type Twinkle promote mtDNA deletions, which implies that not only mutations in, but also dysregulation of the stoichiometry between the replisome components is potentially pathogenic. The mechanism(s) by which alterations to the replisome function generate mtDNA deletions is(are) currently under debate. It is commonly accepted that stalling of the replication fork at sites likely to form secondary structures precedes the deletion formation. The secondary structural elements can be bypassed by the replication-slippage mechanism. Otherwise, stalling of the replication fork can generate single- and double-strand breaks, which can be repaired through recombination leading to the elimination of segments between the recombination sites. Here, we discuss aberrances of the replisome in the context of the two debated outcomes, and suggest new mechanistic explanations based on replication restart and template switching that could account for all the deletion types reported for patients.

11.
Hum Mol Genet ; 28(19): 3163-3174, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31261379

RESUMEN

Disease-associated variants in mitochondrial DNA (mtDNA) are frequently heteroplasmic, a state of co-existence with the wild-type genome. Because heteroplasmy correlates with the severity and penetrance of disease, improvement in the ratio between these genomes in favor of the wild-type, known as heteroplasmy shifting, is potentially therapeutic. We evaluated known pathogenic mtDNA variants and identified those with the potential for allele-specific differences in the formation of non-Watson-Crick G-quadruplex (GQ) structures. We found that the Leigh syndrome (LS)-associated m.10191C variant promotes GQ formation within local sequence in vitro. Interaction of this sequence with a small molecule GQ-binding agent, berberine hydrochloride, further increased GQ stability. The GQ formed at m.10191C differentially impeded the processivity of the mitochondrial DNA polymerase gamma (Pol γ) in vitro, providing a potential means to favor replication of the wild-type allele. We tested the potential for shifting heteroplasmy through the cyclical application of two different mitochondria-targeted GQ binding compounds in primary fibroblasts from patients with m.10191T>C heteroplasmy. Treatment induced alternating mtDNA depletion and repopulation and was effective in shifting heteroplasmy towards the non-pathogenic allele. Similar treatment of pathogenic heteroplasmies that do not affect GQ formation did not induce heteroplasmy shift. Following treatment, heteroplasmic m.10191T>C cells had persistent improvements and heteroplasmy and a corresponding increase in maximal mitochondrial oxygen consumption. This study demonstrates the potential for using small-molecule GQ-binding agents to induce genetic and functional improvements in m.10191T>C heteroplasmy.


Asunto(s)
Alcaloides de Berberina/farmacología , ADN Mitocondrial/genética , Enfermedad de Leigh/genética , Berberina/química , Alcaloides de Berberina/química , Células Cultivadas , ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/química , ADN Mitocondrial/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , G-Cuádruplex/efectos de los fármacos , Variación Genética , Humanos , Enfermedad de Leigh/metabolismo
12.
Nucleic Acids Res ; 47(11): 5723-5734, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30968132

RESUMEN

Genome replication induces the generation of large stretches of single-stranded DNA (ssDNA) intermediates that are rapidly protected by single-stranded DNA-binding (SSB) proteins. To date, the mechanism by which tightly bound SSBs are removed from ssDNA by the lagging strand DNA polymerase without compromising the advance of the replication fork remains unresolved. Here, we aimed to address this question by measuring, with optical tweezers, the real-time replication kinetics of the human mitochondrial and bacteriophage T7 DNA polymerases on free-ssDNA, in comparison with ssDNA covered with homologous and non-homologous SSBs under mechanical tension. We find important differences between the force dependencies of the instantaneous replication rates of each polymerase on different substrates. Modeling of the data supports a mechanism in which strong, specific polymerase-SSB interactions, up to ∼12 kBT, are required for the polymerase to dislodge SSB from the template without compromising its instantaneous replication rate, even under stress conditions that may affect SSB-DNA organization and/or polymerase-SSB communication. Upon interaction, the elimination of template secondary structure by SSB binding facilitates the maximum replication rate of the lagging strand polymerase. In contrast, in the absence of polymerase-SSB interactions, SSB poses an effective barrier for the advance of the polymerase, slowing down DNA synthesis.


Asunto(s)
Bacteriófago T7/enzimología , ADN Polimerasa gamma/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Pinzas Ópticas , Bacteriófago T7/genética , Replicación del ADN/efectos de los fármacos , ADN de Cadena Simple/metabolismo , ADN Viral/metabolismo , Escherichia coli/genética , Humanos , Cinética , Conformación de Ácido Nucleico , Proteínas Recombinantes , Temperatura , Termodinámica , Proteínas Virales/metabolismo
13.
Nucleic Acids Res ; 46(6): 3034-3046, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29432582

RESUMEN

Pathological conditions impairing functions of mitochondria often lead to compensatory upregulation of the mitochondrial DNA (mtDNA) replisome machinery, and the replicative DNA helicase appears to be a key factor in regulating mtDNA copy number. Moreover, mtDNA helicase mutations have been associated with structural rearrangements of the mitochondrial genome. To evaluate the effects of elevated levels of the mtDNA helicase on the integrity and replication of the mitochondrial genome, we overexpressed the helicase in Drosophila melanogaster Schneider cells and analyzed the mtDNA by two-dimensional neutral agarose gel electrophoresis and electron microscopy. We found that elevation of mtDNA helicase levels increases the quantity of replication intermediates and alleviates pausing at the replication slow zones. Though we did not observe a concomitant alteration in mtDNA copy number, we observed deletions specific to the segment of repeated elements in the immediate vicinity of the origin of replication, and an accumulation of species characteristic of replication fork stalling. We also found elevated levels of RNA that are retained in the replication intermediates. Together, our results suggest that upregulation of mtDNA helicase promotes the process of mtDNA replication but also results in genome destabilization.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN/genética , Drosophila melanogaster/genética , Genoma Mitocondrial/genética , Animales , Línea Celular , ADN Helicasas/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Dosificación de Gen , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
14.
Nucleic Acids Res ; 45(12): 7237-7248, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28486639

RESUMEN

Single-stranded DNA-binding proteins (SSBs) play a key role in genome maintenance, binding and organizing single-stranded DNA (ssDNA) intermediates. Multimeric SSBs, such as the human mitochondrial SSB (HmtSSB), present multiple sites to interact with ssDNA, which has been shown in vitro to enable them to bind a variable number of single-stranded nucleotides depending on the salt and protein concentration. It has long been suggested that different binding modes might be used selectively for different functions. To study this possibility, we used optical tweezers to determine and compare the structure and energetics of long, individual HmtSSB-DNA complexes assembled on preformed ssDNA and on ssDNA generated gradually during 'in situ' DNA synthesis. We show that HmtSSB binds to preformed ssDNA in two major modes, depending on salt and protein concentration. However, when protein binding was coupled to strand-displacement DNA synthesis, only one of the two binding modes was observed under all experimental conditions. Our results reveal a key role for the gradual generation of ssDNA in modulating the binding mode of a multimeric SSB protein and consequently, in generating the appropriate nucleoprotein structure for DNA synthetic reactions required for genome maintenance.


Asunto(s)
ADN Mitocondrial/genética , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Sitios de Unión , ADN Mitocondrial/biosíntesis , ADN de Cadena Simple/biosíntesis , Proteínas de Unión al ADN/metabolismo , Genoma Mitocondrial , Humanos , Cinética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Pinzas Ópticas , Unión Proteica , Cloruro de Sodio/farmacología , Termodinámica
15.
Methods Mol Biol ; 1351: 211-22, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26530685

RESUMEN

The mitochondrial single-stranded DNA-binding protein (mtSSB) coordinates the function of replisome components at the mitochondrial replication fork. In recent years, it has been demonstrated that mtSSB stimulates the activities of DNA polymerase γ (Pol γ) and mitochondrial DNA (mtDNA) helicase in a concentration-dependent manner. Here we present a new approach to purify the human mtSSB and our standard assays to evaluate its biochemical properties, including a Gel Mobility Shift Assay (GMSA) to assess single-stranded DNA (ssDNA) binding activity, and an assay to assess SSB stimulation of Pol γ activity.


Asunto(s)
Replicación del ADN/genética , ADN Mitocondrial/genética , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas Mitocondriales/genética , ADN Helicasas/metabolismo , ADN Polimerasa gamma , ADN Polimerasa Dirigida por ADN/genética , Ensayo de Cambio de Movilidad Electroforética/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo
16.
Methods Mol Biol ; 1351: 223-31, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26530686

RESUMEN

A lack of effective treatment for mitochondrial diseases prompts scientists to investigate the molecular processes that underlie their development. The major cause of mitochondrial diseases is dysfunction of the sole mitochondrial DNA polymerase, DNA polymerase γ (Pol γ). The development of treatment strategies will require a detailed characterization of the molecular properties of Pol γ. A novel technique, biolayer interferometry, allows one to monitor molecular interactions in real time, thus providing an insight into the kinetics of the process. Here, we present an application of the biolayer interferometry technique to characterize the fundamental reactions that Pol γ undergoes during the initiation phase of mitochondrial DNA replication: holoenzyme formation and binding to the primer-template.


Asunto(s)
ADN Mitocondrial/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Interferometría/métodos , Complejos Multienzimáticos/genética , Técnicas Biosensibles/métodos , ADN Polimerasa gamma , Replicación del ADN/genética , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/genética
17.
J Biol Chem ; 290(48): 28697-707, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26446790

RESUMEN

The activity of the mitochondrial replicase, DNA polymerase γ (Pol γ) is stimulated by another key component of the mitochondrial replisome, the mitochondrial single-stranded DNA-binding protein (mtSSB). We have performed a comparative analysis of the human and Drosophila Pols γ with their cognate mtSSBs, evaluating their functional relationships using a combined approach of biochemical assays and electron microscopy. We found that increasing concentrations of both mtSSBs led to the elimination of template secondary structure and gradual opening of the template DNA, through a series of visually similar template species. The stimulatory effect of mtSSB on Pol γ on these ssDNA templates is not species-specific. We observed that human mtSSB can be substituted by its Drosophila homologue, and vice versa, finding that a lower concentration of insect mtSSB promotes efficient stimulation of either Pol. Notably, distinct phases of the stimulation by both mtSSBs are distinguishable, and they are characterized by a similar organization of the template DNA for both Pols γ. We conclude that organization of the template DNA is the major factor contributing to the stimulation of Pol γ activity. Additionally, we observed that human Pol γ preferentially utilizes compacted templates, whereas the insect enzyme achieves its maximal activity on open templates, emphasizing the relative importance of template DNA organization in modulating Pol γ activity and the variation among systems.


Asunto(s)
ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , ADN Polimerasa gamma , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Proteínas Mitocondriales/genética
18.
Biochim Biophys Acta ; 1833(10): 2233-43, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23688635

RESUMEN

Faithful replication and propagation of mitochondrial DNA (mtDNA) is critical for cellular respiration. Molecular chaperones, ubiquitous proteins involved in protein folding and remodeling of protein complexes, have been implicated in mtDNA transactions. In particular, cells lacking Mdj1, an Hsp40 co-chaperone of Hsp70 in the mitochondrial matrix, do not maintain functional mtDNA. Here we report that the great majority of Mdj1 is associated with nucleoids, DNA-protein complexes that are the functional unit of mtDNA transactions. Underscoring the importance of Hsp70 chaperone activity in the maintenance of mtDNA, an Mdj1 variant having an alteration in the Hsp70-interacting J-domain does not maintain mtDNA. However, a J-domain containing fragment expressed at the level that Mdj1 is normally present is not competent to maintain mtDNA, suggesting a function of Mdj1 beyond that carried out by its J-domain. Nevertheless, loss of mtDNA function upon Mdj1 depletion is retarded when the J-domain, is overexpressed. Analysis of Mdj1 variants revealed a correlation between nucleoid association and DNA maintenance activity, suggesting that localization is functionally important. We found that Mdj1 has DNA binding activity and that variants retaining DNA-binding activity also retained nucleoid association. Together, our results are consistent with a model in which Mdj1, tethered to the nucleoid via DNA binding, thus driving a high local concentration of the Hsp70 machinery, is important for faithful DNA maintenance and propagation.


Asunto(s)
Núcleo Celular/metabolismo , Replicación del ADN , ADN Mitocondrial/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/genética , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de la Membrana/genética , Plásmidos , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...