Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Phys Med Biol ; 69(10)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38593817

Objective. Severe radiation-induced lymphopenia occurs in 40% of patients treated for primary brain tumors and is an independent risk factor of poor survival outcomes. We developed anin-silicoframework that estimates the radiation doses received by lymphocytes during volumetric modulated arc therapy brain irradiation.Approach. We implemented a simulation consisting of two interconnected compartmental models describing the slow recirculation of lymphocytes between lymphoid organs (M1) and the bloodstream (M2). We used dosimetry data from 33 patients treated with chemo-radiation for glioblastoma to compare three cases of the model, corresponding to different physical and biological scenarios: (H1) lymphocytes circulation only in the bloodstream i.e. circulation inM2only; (H2) lymphocytes recirculation between lymphoid organs i.e. circulation inM1andM2interconnected; (H3) lymphocytes recirculation between lymphoid organs and deep-learning computed out-of-field (OOF) dose to head and neck (H&N) lymphoid structures. A sensitivity analysis of the model's parameters was also performed.Main results. For H1, H2 and H3 cases respectively, the irradiated fraction of lymphocytes was 99.8 ± 0.7%, 40.4 ± 10.2% et 97.6 ± 2.5%, and the average dose to irradiated pool was 309.9 ± 74.7 mGy, 52.6 ± 21.1 mGy and 265.6 ± 48.5 mGy. The recirculation process considered in the H2 case implied that irradiated lymphocytes were irradiated in the field only 1.58 ± 0.91 times on average after treatment. The OOF irradiation of H&N lymphoid structures considered in H3 was an important contribution to lymphocytes dose. In all cases, the estimated doses are low compared with lymphocytes radiosensitivity, and other mechanisms could explain high prevalence of RIL in patients with brain tumors.Significance. Our framework is the first to take into account OOF doses and recirculation in lymphocyte dose assessment during brain irradiation. Our results demonstrate the need to clarify the indirect effects of irradiation on lymphopenia, in order to potentiate the combination of radio-immunotherapy or the abscopal effect.


Brain Neoplasms , Lymphocytes , Radiotherapy Dosage , Humans , Lymphocytes/radiation effects , Lymphocytes/cytology , Brain Neoplasms/radiotherapy , Radiometry , Radiation Dosage , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Brain/radiation effects
2.
Chemistry ; 26(64): 14602-14611, 2020 Nov 17.
Article En | MEDLINE | ID: mdl-32501573

Lanthanide-doped nanoparticles (LnNPs) have become an important class of fluorophores for advanced biosensing and bioimaging. LnNPs that are photosensitized by surface-attached antenna ligands can possess exceptional brightness. However, their functional bioconjugation remains an important challenge for their translation into bioanalytical applications. To solve this problem, we designed a ligand that can be simultaneously applied as efficient light harvesting antenna for Tb surface ions and strong linker of biomolecules to the LnNPs surfaces. To demonstrate generic applicability of the photosensitized TbNP-bioconjugates, we applied them in two prototypical applications for biosensing and bioimaging. First, in-solution biorecognition was shown by time-resolved Förster resonance energy transfer (FRET) between streptavidin-functionalized TbNPs to biotinylated dyes (ATTO 610). Second, in situ detection of ligand-receptor binding on cells was accomplished with TbNP-antibody (Matuzumab) conjugates that could specifically bind to transmembrane epidermal growth factor receptors (EGFR). High specificity and sensitivity were demonstrated by time-gated imaging of EGFR on both strongly (A431) and weakly (HeLa and Cos7) EGFR-expressing cell lines, whereas non-expressing cell lines (NIH3T3) and EGFR-passivated A431 cells did not show any signals. Despite the relatively large size of TbNP-antibody conjugates, they could be internalized by A431 cells upon binding to extracellular EGFR, which showed their potential as bright and stable luminescence markers for intracellular signaling.


Biosensing Techniques , Nanoparticles , Animals , EGF Family of Proteins , ErbB Receptors/metabolism , Fluorescence Resonance Energy Transfer , Mice , NIH 3T3 Cells , Terbium
3.
Angew Chem Int Ed Engl ; 57(41): 13686-13690, 2018 10 08.
Article En | MEDLINE | ID: mdl-30084526

Fluorescence barcoding based on nanoparticles provides many advantages for multiparameter imaging. However, creating different concentration-independent codes without mixing various nanoparticles and by using single-wavelength excitation and emission for multiplexed cellular imaging is extremely challenging. Herein, we report the development of quantum dots (QDs) with two different SiO2 shell thicknesses (6 and 12 nm) that are coated with two different lanthanide complexes (Tb and Eu). FRET from the Tb or Eu donors to the QD acceptors resulted in four distinct photoluminescence (PL) decays, which were encoded by simple time-gated (TG) PL intensity detection in three individual temporal detection windows. The well-defined single-nanoparticle codes were used for live cell imaging and a one-measurement distinction of four different cells in a single field of view. This single-color barcoding strategy opens new opportunities for multiplexed labeling and tracking of cells.


Europium/chemistry , Fluorescence Resonance Energy Transfer/methods , Nanoparticles , Quantum Dots , Terbium/chemistry
...