Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Adhes Dent ; 26: 213-222, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286912

RESUMEN

PURPOSE: To evaluate the long-term microtensile bond strength (µTBS) to dentin, water sorption (WSP) and solubility (WSL), and degree of conversion (DC) of self-adhesive resin composites (SACs). MATERIALS AND METHODS: The mid-coronal dentin of human molars was exposed, and teeth were randomly assigned to five groups according to the SACs (n = 10): 1. FIT SA F03 (FIT); 2. Experimental (EXP); 3. Fusio Liquid Dentin (FLD); 4. Vertise Flow (VER); 5. Constic (CON). The µTBS was evaluated after 24 hours (24 h) and 6 months (6 m) storage. A scanning electron microscope examined failure modes and resin-dentin interfaces. The WSP and WSL (n = 5) were evaluated following ISO 4049:2019 specifications, and DC (n = 3) was measured using Raman spectroscopy. The statistical analyses were performed accepting a significance level of p = 0.05. RESULTS: FIT, EXP, and FLD produced significantly higher µTBS median values than VER and CON after 24 h and 6 m (p 0.05). After 6m, the µTBS median of FIT and EXP significantly decreased (p 0.05), while FLD, VER, and CON showed no significant difference (p > 0.05). FLD and CON exhibited lower WSP than FIT, EXP, and VER (p 0.05). FLD presented the lowest (p 0.05), and VER revealed the highest WSL (p 0.05). FIT and EXP showed the highest (p 0.05), and VER demonstrated the lowest DC (p 0.05). CONCLUSIONS: Following the present study's design, SACs' bonding performance and physical properties remained restricted. Therefore, the application should be considered cautiously, and further clinical trials are necessary to evaluate their long-term performance.


Asunto(s)
Resinas Compuestas , Recubrimiento Dental Adhesivo , Dentina , Ensayo de Materiales , Solubilidad , Resistencia a la Tracción , Agua , Resinas Compuestas/química , Humanos , Agua/química , Microscopía Electrónica de Rastreo , Recubrimientos Dentinarios/química , Cementos de Resina/química , Espectrometría Raman , Factores de Tiempo , Propiedades de Superficie , Análisis del Estrés Dental
2.
Clin Oral Investig ; 28(8): 444, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046575

RESUMEN

OBJECTIVES: To evaluate the effect of proanthocyanidin-functionalized hydroxyapatite nanoparticles (nHAp_PA) used as pretreatment at different concentrations on the microtensile bond strength (µTBS) and endogenous enzymatic activity (MMPs) on pH-cycled dentin after 24 h and 6 months of artificial aging. MATERIALS AND METHODS: Fifty human sound dentin blocks were randomly assigned to 5 groups (n = 10): (i) negative control (no treatment); (ii) positive control (pH-cycling); (iii) pH-cycling + 2% nHAp_PA for 60s; (iv) pH-cycling + 6.5% nHAp_PA for 60s; (v) pH-cycling + 15% nHAp_PA for 60s. A self-etch adhesive was used for bonding procedures before resin composite build-ups. Specimens were tested with the µTBS test after 24 h and 6 months of laboratory storage. The proteolytic activity in each group was evaluated with gelatin zymography and in situ zymography. Data were statistically analyzed (p < 0.05). RESULTS: At 24 h, the µTBS of the experimental groups were significantly higher than the controls (p ≤ 0.001), and no differences were observed between different concentrations (p > 0.05). Artificial aging significantly decreased bond strength in all groups (p ≤ 0.008); however, nHAp_PA 2% still yielded higher bonding values than controls (p ≤ 0.007). The groups pretreated with nHAp_PA exhibited lower MMP-9 and MMP-2 activities compared to the positive control group and almost the same enzymatic activity as the negative control group. In situ zymography showed that after 6 months of aging, nHAp_PA 2% and nHAp_PA 6,5% decreased enzymatic activity as well as the negative control. CONCLUSIONS: Dentin pretreatment with nHAp_PA increased the bonding performance of a self-etch adhesive and decreased MMP-2 and MMP-9 activities after 6 months.


Asunto(s)
Recubrimiento Dental Adhesivo , Durapatita , Ensayo de Materiales , Nanopartículas , Proantocianidinas , Resistencia a la Tracción , Proantocianidinas/química , Proantocianidinas/farmacología , Durapatita/química , Nanopartículas/química , Humanos , Recubrimiento Dental Adhesivo/métodos , Recubrimientos Dentinarios/química , Dentina , Propiedades de Superficie , Técnicas In Vitro , Análisis del Estrés Dental , Concentración de Iones de Hidrógeno , Resinas Compuestas/química , Distribución Aleatoria
3.
J Dent Sci ; 19(3): 1609-1619, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39035277

RESUMEN

Background/purpose: The dental adhesive market is constantly evolving to meet the demands of dentists and patients, but new products and upgrades should be rigorously evaluated before being used in clinical practice. This study investigated the physicomechanical properties and dentin bonding efficacy of a newly upgraded universal adhesive compared to its predecessor. Materials and methods: Twenty-four molars were divided into four groups (n = 6/group) based on adhesive (new vs. predecessor) and application mode [self-etch (SE) vs. etch-and-rinse (ER)] for evaluating their dentin microtensile bond strength (µTBS), failure pattern, and bonding interface. Additional thirty-six molars' crowns were perpendicularly sectioned to obtain flat mid-coronal dentin discs. The opposing dentin surfaces of each disc received contrasting treatments (new/predecessor adhesive applied in SE/ER mode), resulting in six interventions. The bonded discs (n = 6/intervention) were used to assess the adhesives' survival probability employing a double-sided µTBS test. The other physicomechanical properties examined were adhesives' oxygen inhibition layer (OIL), viscosity, hardness, elastic modulus, degree of conversion (DC), and in-situ DC. Results: Both adhesive versions showed similar µTBS (P > 0.05), failure pattern (P > 0.05), and survival probability (P > 0.008). ER mode promoted resin tag formation and exhibited a slender adhesive layer for both adhesives. The newer adhesive version showed a thinner adhesive layer in general with narrower OIL (P < 0.001), less viscosity (P < 0.001), higher hardness (P < 0.05), elastic modulus (P < 0.05), DC (P < 0.001), and in-situ DC (P < 0.001). Conclusion: While the newly updated adhesive had superior physicomechanical properties with more fluidity, its dentin bonding efficacy and survival probability were comparable to its predecessor.

4.
Polymers (Basel) ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732688

RESUMEN

This study evaluated the effect of simulated pulpal pressure (SPP) conditions and storage time on contemporary adhesive systems' microtensile bond strength (µTBS) to dentin. Extracted human molars were prepared and randomly divided into four groups according to the adhesives: Clearfil Megabond 2 (CSE), Beautibond Xtreme Universal (BXU), G2-Bond (G2B), and Scotchbond Universal Plus (SBP). Each adhesive group was further divided following the SPP conditions: control with no simulation (SPP-CTR), SPP with distilled water (SPP-DTW), and SPP with fetal bovine serum (SPP-FBS). Resin composite build-ups were prepared, and teeth were stored in water (37 °C) for 24 h (24 h) and 3 months (3 m). Then, teeth were sectioned to obtain resin-dentin bonded beams and tested to determine the µTBS. Data were analyzed using three-way ANOVA, Tukey post hoc tests (=0.05), and Weibull failure analysis. Failure mode was observed using scanning electron microscopy. The µTBS response was affected by adhesive systems, simulated pulpal pressure conditions, and storage time. SPP-CTR groups presented a higher overall bond strength than SPP-DTW and SPP-FBS, which were not significantly different from each other. Only for SBP, the SPP-FBS group showed higher µTBS than the SPP-DTW group. The Weibull analysis showed that the bonding reliability and durability under SPP-DTW and SPP-FBS were inferior to SPP-CTR, and the 24 h bonding quality of adhesives to dentin was superior to that of 3 m. SPP drastically reduced the µTBS of all adhesives to dentin regardless of solution (distilled water or fetal bovine serum). Storage after 3 m also decreased µTBS despite the SPP condition.

5.
Int J Biol Macromol ; 268(Pt 1): 131676, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641271

RESUMEN

The development of new biocompatible and eco-friendly materials is essential for the future of dental practice, especially for the management of dental caries. In this study, a novel and simple method was applied for the green synthesis of silver nanoparticles (AgNPs) from the aqueous extract of Camellia sinensis (WT) and functionalized with chitosan (CHS) and NaF. The effects of WT_AgNPs application on demineralized dentin were evaluated for potential dental applications. The WT_AgNPs showed molecular groups related to organic compounds, potentially acting as reducing and capping agents. All AgNPs presented spherical shapes with crystal sizes of approximately 20 nm. Forty human molars were assigned to control: sound (SD) and demineralised dentine (DD), and experimental groups: WT_AgNPs, WT_AgNPs_NaF, and WT_AgNPs_CHS. Then, the NPs were applied to DD to evaluate the chemical, crystallographic, and microstructural characteristics of treated-dentine. In addition, a three-point bending test was employed to assess mechanical response. The application of WT_AgNPs indicated a higher mineralisation degree and crystallites sizes of hydroxyapatite than the DD group. SEM images showed that WT_AgNPs presented different degrees of aggregation and distribution patterns. The dentine flexural strength was significantly increased in all WT_AgNPs. The application of WT_AgNPs demonstrated remineralising and strengthening potential on demineralised dentine.


Asunto(s)
Camellia sinensis , Quitosano , Fluoruros , Tecnología Química Verde , Nanopartículas del Metal , Plata , Quitosano/química , Plata/química , Nanopartículas del Metal/química , Camellia sinensis/química , Tecnología Química Verde/métodos , Fluoruros/química , Humanos , Dentina/química , Extractos Vegetales/química
6.
J Appl Oral Sci ; 31: e20220306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36995879

RESUMEN

OBJECTIVE: (1) to determine the effects of the silver diamine fluoride (SDF) and sodium fluoride (NaF) in demineralized dentin exposed to an acid challenge by pH-cycling, (2) to evaluate the remineralizing capacity of SDF/NaF products based on the physicochemical and mechanical properties of the treated dentin surfaces. METHODOLOGY: In total, 57 human molars were evaluated in different stages of the experimental period: sound dentin - negative control (Stage 1), demineralized dentin - positive control (Stage 2), and dentin treated with SDF/NaF products + pH-c (Stage 3). Several commercial products were used for the SDF treatment: Saforide, RivaStar, and Cariestop. The mineral composition and crystalline and morphological characteristics of the dentin samples from each experimental stage were evaluated by infrared spectroscopy (ATR-FTIR), X-ray diffraction, and electron microscopy (SEM-EDX) analytical techniques. Moreover, the mechanical response of the samples was analyzed by means of the three-point bending test. Statistics were estimated for ATR-FTIR variables by Wilcoxon test, while the mechanical data analyses were performed using Kruskal-Wallis and Mann Whitney U tests. RESULTS: Regarding the chemical composition, we observed a higher mineral/organic content in the SDF/NaF treated dentin + pH-c groups (Stage 3) than in the positive control groups (Saforide p=0.03; Cariestop p=0.008; RivaStar p=0.013; NaF p=0.04). The XRD results showed that the crystallite size of hydroxyapatite increased in the SDF/NaF treated dentin + pH-c groups (between +63% in RivaStar to +108% in Saforide), regarding the positive control. SEM images showed that after application of the SDF/NaF products a crystalline precipitate formed on the dentin surface and partially filled the dentin tubules. The flexural strength (MPa) values were higher in the dentin treated with SDF/NaF + pH-c (Stage 3) compared to the positive control groups (Saforide p=0.002; Cariestop p=0.04; RivaStar p=0.04; NaF p=0.02). CONCLUSIONS: The application of SDF/NaF affected the physicochemical and mechanical properties of demineralized dentin. According to the results, the use of SFD/NaF had a remineralizing effect on the dentin surface even under acid challenge.


Asunto(s)
Dentina , Fluoruros Tópicos , Humanos , Fluoruros Tópicos/farmacología , Fluoruros Tópicos/química , Fluoruro de Sodio/farmacología , Durapatita/farmacología , Concentración de Iones de Hidrógeno
7.
J. appl. oral sci ; 31: e20220306, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1430638

RESUMEN

Abstract Objective (1) to determine the effects of the silver diamine fluoride (SDF) and sodium fluoride (NaF) in demineralized dentin exposed to an acid challenge by pH-cycling, (2) to evaluate the remineralizing capacity of SDF/NaF products based on the physicochemical and mechanical properties of the treated dentin surfaces. Methodology In total, 57 human molars were evaluated in different stages of the experimental period: sound dentin - negative control (Stage 1), demineralized dentin - positive control (Stage 2), and dentin treated with SDF/NaF products + pH-c (Stage 3). Several commercial products were used for the SDF treatment: Saforide, RivaStar, and Cariestop. The mineral composition and crystalline and morphological characteristics of the dentin samples from each experimental stage were evaluated by infrared spectroscopy (ATR-FTIR), X-ray diffraction, and electron microscopy (SEM-EDX) analytical techniques. Moreover, the mechanical response of the samples was analyzed by means of the three-point bending test. Statistics were estimated for ATR-FTIR variables by Wilcoxon test, while the mechanical data analyses were performed using Kruskal-Wallis and Mann Whitney U tests. Results Regarding the chemical composition, we observed a higher mineral/organic content in the SDF/NaF treated dentin + pH-c groups (Stage 3) than in the positive control groups (Saforide p=0.03; Cariestop p=0.008; RivaStar p=0.013; NaF p=0.04). The XRD results showed that the crystallite size of hydroxyapatite increased in the SDF/NaF treated dentin + pH-c groups (between +63% in RivaStar to +108% in Saforide), regarding the positive control. SEM images showed that after application of the SDF/NaF products a crystalline precipitate formed on the dentin surface and partially filled the dentin tubules. The flexural strength (MPa) values were higher in the dentin treated with SDF/NaF + pH-c (Stage 3) compared to the positive control groups (Saforide p=0.002; Cariestop p=0.04; RivaStar p=0.04; NaF p=0.02). Conclusions The application of SDF/NaF affected the physicochemical and mechanical properties of demineralized dentin. According to the results, the use of SFD/NaF had a remineralizing effect on the dentin surface even under acid challenge.

8.
Inquiry ; 59: 469580221109970, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912432

RESUMEN

Dentists in Spain reached equal gender representation in 2012 and the number of female dentists has continued to grow (until 57.3% in 2020). This study aims to increase evidence about the gender distribution on the high responsibility positions and opinion leaders of the dental profession and academia. Composition of the executive comities of the main dental institutions of Spain (regional professional associations, national dental association, and scientific societies), members of the Faculty of Dentistry of the University of Granada in 2020 and speakers of the main dental congresses of 2019 (due to the lack of congress in 2020) were recorded and analyzed by genders using chi-squared test (P < .05). Mean representation of female dentists in executive committees of professional associations was 35.6%. More than 70% of presidents and vice-presidents of professional colleges and more than 60% of these positions in scientific societies were occupied by male dentists. None of dental congresses of 2019 reached equal gender participation, being 81.3% of lecturers presenting on main auditoriums male dentists. Although dental workforce in Spain is slightly overrepresented by females, leadership positions and figures among Spanish dentists doesn't seem to reflect the gender distribution of the collective. There is a lack of women occupying high-level positions in dentistry that proves the existence of the so-called "glass ceiling effect" on the profession. Further studies about sociodemographic aspects of dental workforce are needed to develop evidence-based policies for the collective.


Asunto(s)
Odontología/organización & administración , Odontólogas , Liderazgo , Femenino , Humanos , Masculino , España , Universidades
9.
J Adhes Dent ; 23(6): 557-567, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34817971

RESUMEN

PURPOSE: To investigate the effects of four commercial silver diamine fluoride (SDF) agents on the chemical composition and microstructural properties of dentin, and its relation to the bond strength of two adhesives. MATERIALS AND METHODS: Ninety human molars were randomly divided into sound dentin (negative control), demineralized dentin (positive control), and four experimental groups (n = 15) according to the SDF treatments (Cariestop [Biodinamica Quimica y Farmaceutica], RivaStar 1 [SDI], RivaStar 2 [SDI], and Saforide [Tokyo Seiyaku Kasei]). ATR-FTIR, x-ray diffraction, and SEM techniques were employed to characterize the compositional, crystalline, and microstructural properties of the samples. The microtensile bond strength test evaluated the bonding performance of two adhesives in demineralized dentin treated with SDF agents. RESULTS: Regarding the chemical composition, all SDF-treated groups showed a significantly higher phosphate:organic matrix ratio than the demineralized dentin group (p < 0.05). The XRD analyses revealed that the crystallite size for hydroxyapatite crystals increased on the surface areas (deep, medium, and superficial dentin) for all experimental groups compared to demineralized dentin (p < 0.05). SEM images showed that the behavior of the agents used differs on each surface treated. Bond strength values were adversely affected with both adhesive systems in the four experimental groups (p < 0.05). CONCLUSIONS: The application of SDF agents resulted in the formation of different crystalline phases of silver salts and the increase of mineralization of the pretreated demineralized dentin. However, SDF application showed a negative effect on the bond strength of the adhesives.


Asunto(s)
Recubrimiento Dental Adhesivo , Dentina , Recubrimientos Dentinarios , Fluoruros Tópicos , Humanos , Ensayo de Materiales , Compuestos de Amonio Cuaternario , Compuestos de Plata
10.
Dent Mater ; 37(9): 1437-1445, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34353622

RESUMEN

OBJECTIVE: This study evaluated the potential combined effects of nanohydroxyapatite and proanthocyanidin on the remineralization and collagen stabilization of demineralized dentin. METHODS: Seventy-five coronal dentin beams (6 × 1 × 1 mm3) were randomly allocated into five experimental groups (n = 15): Sound (no treatment), Control (pH-cycling), nHAp (nanohydroxyapatite), nHAp_PA (Proanthocyanidin-functionalized nanohydroxyapatite), and PA (proanthocyanidin) treatments. The sound group (negative control) were immersed in distilled water over the experimental period. The remaining groups were submitted to a pH-cycling process for 14 days. Following the de-re mineralization process, specimens corresponding to the control group (positive control) were immersed in distilled water whereas the test groups were immersed in 1 mL of respective solution treatment (nHAp, nHAp_PA, or PA) for 1 min. The dentin samples were analyzed to determine their chemical composition (ATR-FTIR and Thermogravimetric) and mineralogical (XRD) characteristics as well as their mechanical response, obtained by three-point bending test. RESULTS: Higher phosphate content (v4 PO4: ATR-FTIR) and amount of mineral (XRD) was observed in the nHAp_PA group. Furthermore, a larger induction of collagen cross-links (ATR-FTIR) and %Organic Matter (TGA) would indicate the PA incorporation and the achievement of dentin matrix stability. These effects on dentin properties were related to increasing flexural strength (MPa), demonstrating that 15% w/v nHAp_PA treatment improved the mechanical properties of the samples. SIGNIFICANCE: nHAp_PA shows significant potential for promoting remineralization while improving collagen stability into demineralized dentin in a clinically feasible period of 1 min.


Asunto(s)
Nanopartículas , Proantocianidinas , Colágeno , Dentina , Durapatita , Proantocianidinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA