Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167116, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447882

RESUMEN

The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.


Asunto(s)
Aurora Quinasa A , Proteínas de Ciclo Celular , Humanos , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína p53 Supresora de Tumor/genética , Segregación Cromosómica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Inestabilidad Genómica , Inestabilidad Cromosómica/genética , Cromosomas/metabolismo
2.
Genes (Basel) ; 12(9)2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34573304

RESUMEN

The centromere is a fundamental chromosome structure in which the macro-molecular kinetochore assembles and is bound by spindle microtubules, allowing the segregation of sister chromatids during mitosis. Any alterations in kinetochore assembly or functioning or kinetochore-microtubule attachments jeopardize chromosome stability, leading to aneuploidy, a common feature of cancer cells. The spindle assembly checkpoint (SAC) supervises this process, ensuring a faithful segregation of chromosomes. CENP-E is both a protein of the kinetochore and a crucial component of the SAC required for kinetochore-microtubule capture and stable attachment, as well as congression of chromosomes to the metaphase plate. As the function of CENP-E is restricted to mitosis, its haploinsufficiency has been used to study the induced cell aneuploidy; however, the gene expression profile triggered by CENP-E reduction in normal cells has never been explored. To fill this gap, here we investigated whether a gene network exists that is associated with an siRNA-induced 50% reduction in CENP-E and consequent aneuploidy. Gene expression microarray analyses were performed at early and late timepoints after transfection. Initially, cell cycle regulation and stress response pathways were downregulated, while afterwards pathways involved in epithelial-mesenchymal transition, hypoxia and xenobiotic metabolism were altered. Collectively, our results suggest that CENP-E reduction triggers a gene expression program that recapitulates some features of tumor cells.


Asunto(s)
Transcriptoma
3.
Genes (Basel) ; 11(7)2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698529

RESUMEN

P14ARF is a tumor suppressor encoded by the CDKN2a locus that is frequently inactivated in human tumors. P14ARF protein quenches oncogene stimuli by inhibiting cell cycle progression and inducing apoptosis. P14ARF functions can be played through interactions with several proteins. However, the majority of its activities are notoriously mediated by the p53 protein. Interestingly, recent studies suggest a new role of p14ARF in the maintenance of chromosome stability. Here, we deepened this new facet of p14ARF which we believe is relevant to its tumor suppressive role in the cell. To this aim, we generated a monoclonal HCT116 cell line expressing the p14ARF cDNA cloned in the piggyback vector and then induced aneuploidy by treating HCT116 cells with the CENP-E inhibitor GSK923295. P14ARF ectopic re-expression restored the near-diploid phenotype of HCT116 cells, confirming that p14ARF counteracts aneuploid cell generation/proliferation.


Asunto(s)
Proteína p14ARF Supresora de Tumor/genética , Aneuploidia , Compuestos Bicíclicos Heterocíclicos con Puentes/toxicidad , Proliferación Celular , Células HCT116 , Humanos , Fenotipo , Sarcosina/análogos & derivados , Sarcosina/toxicidad , Proteína p14ARF Supresora de Tumor/metabolismo
4.
Genomics ; 112(3): 2541-2549, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32057913

RESUMEN

Chromosome segregation defects lead to aneuploidy which is a major feature of solid tumors. How diploid cells face chromosome mis-segregation and how aneuploidy is tolerated in tumor cells are not completely defined yet. Thus, an important goal of cancer genetics is to identify gene networks that underlie aneuploidy and are involved in its tolerance. To this aim, we induced aneuploidy in IMR90 human primary cells by depleting pRB, DNMT1 and MAD2 and analyzed their gene expression profiles by microarray analysis. Bioinformatic analysis revealed a common gene expression profile of IMR90 cells that became aneuploid. Gene Set Enrichment Analysis (GSEA) also revealed gene-sets/pathways that are shared by aneuploid IMR90 cells that may be exploited for novel therapeutic approaches in cancer. Furthermore, Protein-Protein Interaction (PPI) network analysis identified TOP2A and KIF4A as hub genes that may be important for aneuploidy establishment.


Asunto(s)
Aneuploidia , ADN (Citosina-5-)-Metiltransferasa 1/genética , Regulación de la Expresión Génica , Proteínas Mad2/genética , Proteína de Retinoblastoma/genética , Línea Celular , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Humanos , Proteínas Mad2/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Mapeo de Interacción de Proteínas , Interferencia de ARN , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína de Retinoblastoma/metabolismo , Transcriptoma
5.
Mol Genet Genomics ; 294(1): 149-158, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30264192

RESUMEN

The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that ensures the fidelity of chromosomes segregation. Reduced expression of some of its components weakens the SAC and induces chromosome instability and aneuploidy, which are both well-known hallmarks of cancer cells. Centromere protein-E (CENP-E) is a crucial component of the SAC and its function is to facilitate kinetochore microtubule attachment required to achieve and maintain chromosome alignment. The present study investigates the possible role of p14ARF as a controller of aneuploid cells proliferation. We used RNA interference to induce aneuploidy by partial depletion of CENP-E in human primary fibroblasts (IMR90) and in near diploid tumor cells (HCT116). In contrast to IMR90 aneuploid cell number, which was drastically reduced and leaned towards the WT condition, HCT116 aneuploid cell numbers were slightly decreased at later time points. This euploidy restoration was accompanied by increased p14ARF expression in IMR90 cells and followed ectopic p14ARF re-expression in p14ARF-null HCT116 cells. Collectively, our results suggest that hampering proliferation of aneuploid cells could be an additional role of the p14ARF tumor suppressor.


Asunto(s)
Aneuploidia , Proteínas Cromosómicas no Histona/genética , Fibroblastos/citología , Proteínas Oncogénicas/genética , Línea Celular , Proliferación Celular , Supervivencia Celular , Proteínas Cromosómicas no Histona/metabolismo , Genes Supresores de Tumor , Células HCT116 , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Oncogénicas/metabolismo , ARN Interferente Pequeño
6.
Oncotarget ; 7(4): 3726-39, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26771138

RESUMEN

Aneuploidy, the unbalanced number of chromosomes in a cell, is considered a prevalent form of genetic instability and is largely acknowledged as a condition implicated in tumorigenesis. Epigenetic alterations like DNA hypomethylation have been correlated with cancer initiation/progression. Furthermore, a growing body of evidence suggests the involvement of epigenome-wide disruption as a cause of global DNA hypomethylation in aneuploidy generation.Here, we report that the DNA hypomethylating drug 5-aza-2'-deoxycytidine (DAC), affects the correct ploidy of nearly diploid HCT-116 human cells by altering the methylation pattern of the chromosomes. Specifically, we show that a DAC-induced reduction of 5-Methyl Cytosine at the pericentromeric region of chromosomes correlates with aneuploidy and mitotic defects.Our results suggest that DNA hypomethylation leads to aneuploidy by altering the DNA methylation landscape at the centromere that is necessary to ensure proper chromosomes segregation by recruiting the proteins necessary to build up a functional kinetochore.


Asunto(s)
Aneuploidia , Azacitidina/análogos & derivados , Aberraciones Cromosómicas/inducido químicamente , Neoplasias del Colon/genética , Metilación de ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Mitosis/efectos de los fármacos , Antimetabolitos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Azacitidina/farmacología , Western Blotting , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Análisis Citogenético , Decitabina , Humanos , Microscopía Fluorescente , Ploidias , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...