Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Pathogens ; 12(12)2023 Nov 28.
Article En | MEDLINE | ID: mdl-38133283

Anthropogenic electromagnetic radiation is an important environmental factor affecting the functionality of biological systems. Sensitivity to various frequencies of electromagnetic radiation has been detected in ixodid ticks in the past. However, the physiological aspects of radiation effects have not yet been studied in ticks. In the presented experiment, 360 Ixodes ricinus ticks, 180 males and 180 females, were divided into 16 irradiated and 8 control groups. The irradiated groups were exposed to two different intensities of electromagnetic radiation with a frequency of 900 MHz at different lengths of exposure time. RT-PCR was utilized to determine the changes in mRNA levels in tick synganglia after irradiation. Four randomly selected neuropeptide genes were tested-allatotropin (at), FGLa-related allatostatins (fgla/ast), kinin, and arginine-vasopressin-like peptide (avpl). A significant decrease in transcript levels in all female groups exposed to higher intensity radiofrequency radiation for 1 to 3 h was found. After one hour of radiofrequency exposure, a significant downregulation in allatotropin expression in males was detected. A consistent downregulation of the at gene was detected in males irradiated with at a higher intensity. Unfortunately, the specific functions of the studied neuropeptides in ticks are not known yet, so a more comprehensive study is necessary to describe the effects of EMF on observed neuropeptides. This study represents the first report on the effects of the abiotic environment on tick neurophysiology.

2.
Exp Appl Acarol ; 91(3): 477-485, 2023 Nov.
Article En | MEDLINE | ID: mdl-37819593

Artificial electromagnetic radiation is a new environmental factor that affects animals. Experiments with the effect of radio frequency electromagnetic radiation were focused on both vertebrates and invertebrates. Ticks showed a significant affinity to radiation. Our study is a continuation of this research and its aim was to monitor the effect of radiation on the behavior of four tick species: Ixodes ricinus, Dermacentor reticulatus, Dermacentor marginatus and Haemaphysalis inermis. In total 1,200 ticks, 300 of each species, were tested in modules allowing the choice of an exposed or shielded area. During the test, the ticks were exposed to electro-magnetic radiation of 900 MHz for 24 h. The position of the individuals was recorded and we evaluated the obtained data statistically. We observed a significant preference to the exposed area in both sexes of I. ricinus. Males of D. reticulatus and D. marginatus also showed an affinity to radiation, but not females of both species, nor females and males of H. inermis. The results of the study support the assumption that ticks perceive the electromagnetic field and the observed differences in their response have the potential to help understand the mechanism of perception.


Dermacentor , Ixodes , Ixodidae , Humans , Male , Female , Animals , Dermacentor/physiology , Ixodes/physiology , Radio Waves/adverse effects , Electromagnetic Fields
3.
J Chem Phys ; 158(20)2023 May 28.
Article En | MEDLINE | ID: mdl-37222296

A low-frequency dielectric response of a ferrofluid based on transformer oil and MnZn ferrite nanoparticles is investigated in a gradient magnetic field. Four ferrofluid samples of various nanoparticle concentrations were introduced into planar micro-capacitors located over a magnetized tip. The dielectric spectra were measured in the frequency range from 0.1 Hz to 200 kHz and in the local magnetic field up to 100 mT. The spectra exhibit a dielectric relaxation ascribed to nanoparticle interfacial polarization. The low-frequency spectrum of each ferrofluid decreases upon application of the magnetic field up to 20 mT. The decrease in dielectric permittivity is caused by a magnetic force acting on larger nanoparticles in the gradient magnetic field. It is assumed that the interfaces of the concentrated nanoparticles in the gradient field do not contribute to the effective dielectric response. This reduces the effective relaxation time and shifts the relaxation toward higher frequencies. The dielectric spectra are well described by a relaxation fit function consisting of one Havriliak-Negami and a conductivity term. The fitting confirms that the only effect of the gradient magnetic field on the dielectric spectra is the shift of the dielectric relaxation and the decrease of the amplitude in the imaginary permittivity. This behavior is evident from a master plot, where all dielectric relaxations are superimposed on a single line. The knowledge of the presented behavior of the ferrofluid may be valuable when applying a ferrofluid to sharply magnetized parts of various electrical equipment (wires, tips, screws, nails, edges) as a liquid dielectric medium.

4.
Life (Basel) ; 12(6)2022 Jun 13.
Article En | MEDLINE | ID: mdl-35743915

Mobile telecommunications technologies have become an indispensable part of people's lives of all ages around the world. They affect personal life and social interactions and are a work tool in the work routine. Network availability requirements and the quality of the Internet connection are constantly increasing, to which telecommunications providers are responding. Humans and wildlife live in the permanent presence of electromagnetic radiation with just a minor knowledge of the impact this radiation has. The aim of our study was to investigate the effect of a 900 MHz electromagnetic field (EMF) on the locomotor behavior of female Ixodes ricinus ticks under laboratory conditions. Experiments were performed in the radiation-shielded tube (RST) test and radiation-shielded circular open-field arena placed in an anechoic chamber. Altogether, 480 female I. ricinus ticks were tested. In the RST arena, no differences in preference for irradiated and shielded parts of experimental modules were observed; in the open-field arena, the time spent and the trajectory passed was significantly longer in the part exposed to the EMF.

5.
Ann Agric Environ Med ; 28(3): 419-425, 2021 Sep 16.
Article En | MEDLINE | ID: mdl-34558264

INTRODUCTION AND OBJECTIVE: Electromagnetic radiation interactions with living systems have been one of determining factors in biological evolution. This study investigates the effect of 900 MHz radiofrequency (RF) electromagnetics field (EMF) exposure of eggs on the development of Dermacentor reticulatus larvae. The basic objective was to determine whether the 900 MHz RF-EMF has the potential to influence the size of the body of the hatched larvae of D. reticulatus ticks. MATERIAL AND METHODS: To this aim, eggs from 3 fully engorged females of D. reticulatus were included in the test procedure. Altogether four groups of eggs were designated which included eggs from each female. We used RF-EMF frequency of 900 MHz. Eggs were exposed to EMF for different time periods (30, 60 and 90 minutes) in dark, electromagnetically shielded anechoic chamber. After the irradiation eggs were allowed to hatch in climatic chamber. Randomly selected 200 larval individuals were measured to get basic morphological records. Four body traits including the total body length (TBL), length of gnathosoma with scutum (GSL), the total body width (TBW), and the width of basis capituli (BCW) were measured. RESULTS: The D. reticulatus larvae hatched from eggs exposed for 60 minutes, had demonstrably larger dimensions of all measured body traits not only as a control unexposed group but also as other experimental groups. CONCLUSIONS: The study shows, particularly, that artificial EMF that is used in smartphone technology impacts seriously D. reticulatus larvae development.


Dermacentor/growth & development , Larva/radiation effects , Animals , Dermacentor/radiation effects , Electromagnetic Fields , Female , Larva/growth & development , Male , Ovum/growth & development , Ovum/radiation effects , Radio Waves
6.
Ticks Tick Borne Dis ; 11(4): 101416, 2020 07.
Article En | MEDLINE | ID: mdl-32209348

The electromagnetic field (EMF) is known to influence functions of the nervous, cardiovascular and reproductive systems of many animals, including ticks. The aim of this study was to test the behavior of ticks in the presence of radio-frequency EMF. For testing, 160 adult male and 140 adult female unfed Ixodes ricinus ticks were used. Individuals were exposed to 900 MHz EMF in the Radiation-Shielded Tube (RST). Ticks were attracted to the irradiated area. This effect was significantly stronger for ticks infected with Rickettsia spp., suggesting that pathogens can alter the ticks' response to environmental stimuli. These results lead to the question of whether man-made EMF may have an impact on I. ricinus activity and, as such, be a contributing factor to the ongoing changes in the distribution of the tick and its pathogens currently observed in Europe and elsewhere.


Borrelia burgdorferi Group/physiology , Electromagnetic Fields , Electromagnetic Radiation , Ixodes/radiation effects , Rickettsia/physiology , Animals , Female , Ixodes/microbiology , Ixodes/physiology , Male , Taxis Response
7.
Exp Appl Acarol ; 75(1): 85-95, 2018 May.
Article En | MEDLINE | ID: mdl-29605834

Factors associated with the increased usage of electronic devices, wireless technologies and mobile phones nowadays are present in increasing amounts in our environment. All living organisms are constantly affected by electromagnetic radiation which causes serious environmental pollution. The distribution and density of ticks in natural habitats is influenced by a complex of abiotic and biotic factors. Exposure to radio-frequency electromagnetic field (RF-EMF) constitutes a potential cause altering the presence and distribution of ticks in the environment. Our main objective was to determine the affinity of Dermacentor reticulatus ticks towards RF-EMF exposure. Originally designed and constructed radiation-shielded tube (RST) test was used to test the affinity of ticks under controlled laboratory conditions. All test were performed in an electromagnetic compatibility laboratory in an anechoic chamber. Ticks were irradiated using a Double-Ridged Waveguide Horn Antenna to RF-EMF at 900 and 5000 MHz, 0 MHz was used as control. The RF-EMF exposure to 900 MHz induced a higher concentration of ticks on irradiated arm of RST as opposed to the RF-EMF at 5000 MHz, which caused an escape of ticks to the shielded arm. This study represents the first experimental evidence of RF-EMF preference in D. reticulatus. The projection of obtained results to the natural environment could help assess the risk of tick borne diseases and could be a tool of preventive medicine.


Animal Distribution/radiation effects , Dermacentor/radiation effects , Electromagnetic Fields/adverse effects , Radio Waves/adverse effects , Animals , Female , Male , Slovakia
8.
J Chem Phys ; 146(1): 014704, 2017 Jan 07.
Article En | MEDLINE | ID: mdl-28063423

In the present paper, we provide low-frequency dielectric spectra for a thin layer of a nanofluid based on transformer oil and iron oxide nanoparticles stabilized by oleic acid. The complex dielectric permittivity measured in the frequency range from 1 mHz to 200 kHz shows an obvious electrode polarization effect and a Debye-like dielectric relaxation process. Both effects stem from the presence of space charge in the oil due to impurity ions, and in the nanofluid represented predominantly by a residual surfactant and uncompensated particle surface charge. It is shown that the spectra, which were measured in the temperature range from 298 K to 358 K, can be well represented by a fitting function consisted of one Havriliak-Negami term and the Jonscher's power law. In the investigated magnetic nanofluid layer, we found that the onset of the electrode polarization is suppressed to lower frequencies by the application of an external magnetic field (300 mT). This phenomenon is explained by a slowed-down migration of the space charge due to the Lorentz force and by a hindering effect of the formed magnetic nanoparticle aggregates. Surprisingly, a moderate decrease in the whole permittivity spectrum was observed for both parallel and perpendicular orientations of the electric and magnetic fields. This is in contradiction with the usual magnetodielectric anisotropy effect. Based on our qualitative analysis, we discuss potential reasons accountable for the observed effect.

...