Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
PLoS Negl Trop Dis ; 17(11): e0011695, 2023 Nov.
Article En | MEDLINE | ID: mdl-37956181

BACKGROUND: Trichuris trichiura (whipworm) is one of the most prevalent soil transmitted helminths (STH) affecting 604-795 million people worldwide. Diagnostic tools that are affordable and rapid are required for detecting STH. Here, we assessed the performance of the near-infrared spectroscopy (NIRS) technique coupled with machine learning algorithms to detect Trichuris muris in faecal, blood, serum samples and non-invasively through the skin of mice. METHODOLOGY: We orally infected 10 mice with 30 T. muris eggs (low dose group), 10 mice with 200 eggs (high dose group) and 10 mice were used as the control group. Using the NIRS technique, we scanned faecal, serum, whole blood samples and mice non-invasively through their skin over a period of 6 weeks post infection. Using artificial neural networks (ANN) and spectra of faecal, serum, blood and non-invasive scans from one experiment, we developed 4 algorithms to differentiate infected from uninfected mice. These models were validated on mice from a second independent experiment. PRINCIPAL FINDINGS: NIRS and ANN differentiated mice into the three groups as early as 2 weeks post infection regardless of the sample used. These results correlated with those from concomitant serological and parasitological investigations. SIGNIFICANCE: To our knowledge, this is the first study to demonstrate the potential of NIRS as a diagnostic tool for human STH infections. The technique could be further developed for large scale surveillance of soil transmitted helminths in human populations.


Helminthiasis , Helminths , Trichuriasis , Humans , Animals , Mice , Trichuris , Spectroscopy, Near-Infrared , Trichuriasis/epidemiology , Helminthiasis/epidemiology , Soil/parasitology , Algorithms , Feces/parasitology
2.
Med Vet Entomol ; 37(4): 826-833, 2023 12.
Article En | MEDLINE | ID: mdl-37622600

Aedes koreicus Edwards, 1917 (Hulecoetomyia koreica) is a mosquito (Diptera: Culicidae) from Northeast Asia with a rapidly expanding presence outside its original native range. Over the years, the species has been discovered in several new countries, either spreading after first introduction or remaining localised to limited areas. Notably, recent studies have demonstrated the ability of the species to transmit zoonotic parasites and viruses both in the field and in laboratory settings. Combined with its invasive potential, the possible role of Ae. koreicus in pathogen transmission highlights the public health risks resulting from its invasion. In this study, we used a recently established population from Italy to investigate aspects of biology that influence reproductive success in Ae. koreicus: autogeny, mating behaviour, mating disruption by the sympatric invasive species Aedes albopictus Skuse, 1894, and the presence of the endosymbiont Wolbachia pipientis Hertig, 1936. Our laboratory population did not exhibit autogenic behaviour and required a bloodmeal to complete its ovarian cycle. When we exposed Ae. koreicus females to males of Ae. albopictus, we observed repeated attempts at insemination and an aggressive, disruptive mating behaviour initiated by male Ae. albopictus. Despite this, no sperm was identified in Ae. koreicus spermathecae. Wolbachia, an endosymbiotic bacterium capable of influencing mosquito reproductive behaviour, was not detected in this Ae. koreicus population and, therefore, had no effect on Ae. koreicus reproduction.


Aedes , Female , Male , Animals , Reproduction , Insemination , Italy , Biology , Introduced Species , Mosquito Vectors
3.
Parasit Vectors ; 15(1): 414, 2022 Nov 08.
Article En | MEDLINE | ID: mdl-36348368

Mosquito species belonging to the genus Aedes have attracted the interest of scientists and public health officers because of their capacity to transmit viruses that affect humans. Some of these species were brought outside their native range by means of trade and tourism and then colonised new regions thanks to a unique combination of eco-physiological traits. Considering mosquito physiological and behavioural traits to understand and predict their population dynamics is thus a crucial step in developing strategies to mitigate the local densities of invasive Aedes populations. Here, we synthesised the life cycle of four invasive Aedes species (Ae. aegypti, Ae. albopictus, Ae. japonicus and Ae. koreicus) in a single multi-scale stochastic modelling framework which we coded in the R package dynamAedes. We designed a stage-based and time-discrete stochastic model driven by temperature, photo-period and inter-specific larval competition that can be applied to three different spatial scales: punctual, local and regional. These spatial scales consider different degrees of spatial complexity and data availability by accounting for both active and passive dispersal of mosquito species as well as for the heterogeneity of the input temperature data. Our overarching aim was to provide a flexible, open-source and user-friendly tool rooted in the most updated knowledge on the species' biology which could be applied to the management of invasive Aedes populations as well as to more theoretical ecological inquiries.


Aedes , Humans , Animals , Aedes/physiology , Larva/physiology , Introduced Species , Population Dynamics , Temperature , Mosquito Vectors/physiology
4.
Viruses ; 14(10)2022 10 13.
Article En | MEDLINE | ID: mdl-36298803

Dengue virus (DENV) is the world's most common arboviral infection, with an estimated 3.9 million people at risk of the infection, 100 million symptomatic cases and 10,000 deaths per year. Current diagnosis for DENV includes the use of molecular methods, such as polymerase chain reaction, which can be costly for routine use. The near-infrared spectroscopy (NIR) technique is a high throughput technique that involves shining a beam of infrared light on a biological sample, collecting a reflectance spectrum, and using machine learning algorithms to develop predictive algorithms. Here, we used NIR to detect DENV1 artificially introduced into whole blood, plasma, and serum collected from human donors. Machine learning algorithms were developed using artificial neural networks (ANN) and the resultant models were used to predict independent samples. DENV in plasma samples was detected with an overall accuracy, sensitivity, and specificity of 90% (N = 56), 88.5% (N = 28) and 92.3% (N = 28), respectively. However, a predictive sensitivity of 33.3% (N = 16) and 80% (N = 10) and specificity of 46.7% (N = 16) and 32% (N = 10) was achieved for detecting DENV1 in whole blood and serum samples, respectively. DENV1 peaks observed at 812 nm and 819 nm represent C-H stretch, peaks at 1130-1142 nm are related to methyl group and peaks at 2127 nm are related to saturated fatty groups. Our findings indicate the potential of NIR as a diagnostic tool for DENV, however, further work is recommended to assess its sensitivity for detecting DENV in people naturally infected with the virus and to determine its capacity to differentiate DENV serotypes and other arboviruses.


Dengue Virus , Dengue , Humans , Dengue/blood , Plasma , Serogroup , Spectroscopy, Near-Infrared
5.
PLoS Negl Trop Dis ; 15(4): e0009218, 2021 04.
Article En | MEDLINE | ID: mdl-33886567

CONCLUSIONS/SIGNIFICANCE: The potential of RS as a surveillance tool for malaria and arbovirus vectors and MIRS for the diagnosis and surveillance of arboviruses is yet to be assessed. NIRS capacity as a surveillance tool for malaria and arbovirus vectors should be validated under field conditions, and its potential as a diagnostic tool for malaria and arboviruses needs to be evaluated. It is recommended that all 3 techniques evaluated simultaneously using multiple machine learning techniques in multiple epidemiological settings to determine the most accurate technique for each application. Prior to their field application, a standardised protocol for spectra collection and data analysis should be developed. This will harmonise their application in multiple field settings allowing easy and faster integration into existing disease control platforms. Ultimately, development of rapid and cost-effective point-of-care diagnostic tools for malaria and arboviruses based on spectroscopy techniques may help combat current and future outbreaks of these infectious diseases.


Arbovirus Infections/diagnosis , Malaria/diagnosis , Mosquito Vectors/parasitology , Mosquito Vectors/virology , Spectrum Analysis , Aedes/parasitology , Aedes/virology , Animals , Arbovirus Infections/epidemiology , Cost-Benefit Analysis , Epidemiological Monitoring , Humans , Malaria/epidemiology , Point-of-Care Systems
6.
Pathog Glob Health ; 112(3): 107-114, 2018 05.
Article En | MEDLINE | ID: mdl-29737236

Arthropod-borne disease outbreaks, facilitated by the introduction of exotic mosquitoes, pose a significant public health threat. Recent chikungunya virus (CHIKV) epidemics in Europe highlight the importance of understanding the vector potential of invading mosquitoes. In this paper we explore the potential of Aedes koreicus, a mosquito new to Europe, to transmit CHIKV. Mosquitoes were challenged with CHIKV and maintained at two temperatures: 23 °C and a fluctuating temperature. Total CHIKV infection rates at 3, 10 and 14 days post-feeding were low for both temperature treatments (13.8% at 23 °C; 6.2% at fluctuating T). A low percentage (6.1%, n = 65) of mosquitoes maintained at a constant 23 °C showed dissemination of the virus to the wings and legs. Infection of mosquito saliva, with live virus, occurred in 2 mosquitoes. No dissemination was noted under the fluctuating temperature regime. Based on these results we conclude that CHIKV transmission by this species is possible.


Aedes/growth & development , Aedes/virology , Chikungunya Fever/transmission , Chikungunya virus/isolation & purification , Mosquito Vectors/growth & development , Mosquito Vectors/virology , Aedes/classification , Aedes/radiation effects , Animals , Disease Transmission, Infectious , Europe , Extremities/virology , Mosquito Vectors/radiation effects , Saliva/virology , Temperature , Wings, Animal/virology
7.
Parasit Vectors ; 10(1): 74, 2017 Feb 10.
Article En | MEDLINE | ID: mdl-28183328

BACKGROUND: Aedes (Finlaya) koreicus (Edwards) is a mosquito that has recently entered Europe from Asia. This species is considered a potential threat to newly colonized territories, but little is known about its capacity to transmit pathogens or ability to compete with native mosquito species. The establishment of a laboratory colony is a necessary first step for further laboratory studies on the biology, ecology and vector competence of Ae. koreicus. RESULTS: A self-mating colony was established at QIMR Berghofer Medical Research Institute (Brisbane, Australia) from eggs of the F1 progeny of individuals collected as free-living larvae in northeastern Italy (Belluno province). Mosquitoes are currently maintained on both defibrinated sheep blood provided via an artificial membrane system and human blood from volunteers. Larvae are maintained in rain water and fed with Tetramin® fish food (©2015 Spectrum Brands - Pet, Home and Garden Division, Tetra-Fish). Morphometric measurements related to body size were taken and a fecundity index, based on wing length, was calculated. An in vivo technique for differentiating male and female pupae has been optimized. Our findings provide the basis for further studies on the ecology and physiology of Ae. koreicus. CONCLUSION: We describe the establishment of an Ae. koreicus colony in the laboratory and identify critical requirements for the maintenance of this mosquito species under artificial conditions. The laboratory colony will facilitate studies investigating the vector potential of this species for human pathogens.


Aedes/growth & development , Entomology/methods , Insect Vectors/growth & development , Aedes/physiology , Animals , Europe , Female , Insect Vectors/physiology , Introduced Species , Laboratories , Larva/growth & development , Male , Reproduction , Sheep
8.
Parasit Vectors ; 8: 614, 2015 Dec 01.
Article En | MEDLINE | ID: mdl-26626019

BACKGROUND: The invasive species Aedes (Finlaya) koreicus was first identified in north-eastern Italy in 2011, during the ongoing surveillance activity of Aedes albopictus. Following this finding, a more intensive monitoring was carried out to assess the distribution of the species and to collect biological data. Herein, we report the new records obtained by four years of surveillance. FINDINGS: The presence of Ae. koreicus was checked using ovitraps, adults traps and by larval collections in all possible breeding sites from May 2011 to July 2015. The monitoring started in the site of the first detection (Province of Belluno) and was then extended in the neighbouring Provinces belonging to four Regions. Aedes koreicus was found in 73 municipalities out of 155 monitored (47.1 %), including 23 municipalities (14.8 %) previously not infested. The area of first detection of Ae. koreicus (Province of Belluno) was also the most infested (68 %). However the mosquito has also been found to the west (Province of Trento) and to the south and south-west (Provinces of Vicenza and Treviso) of the initially infested area. CONCLUSIONS: The spread of Ae. koreicus is directed towards south and west from the original infested area, likely due to the dense road connections and the habitat suitability of the new areas. According to these records, northern Italy has a high probability to be invaded by Ae. koreicus in the next decade. These data can be useful to validate predictive models of potential distribution and dispersal of this species in Italy or in Europe.


Aedes/growth & development , Introduced Species , Phylogeography , Animals , Italy
9.
J Med Entomol ; 52(1): 56-62, 2015 Jan.
Article En | MEDLINE | ID: mdl-26336280

The seasonal and daily activity of mosquito vectors of pathogens affecting animals and humans were studied in northeastern Italy at a site within the Po River Delta Park. A CDC-CO2 trap and a gravid trap were operated at 2-h intervals for 24 h every 15 d from May to October 2010. Overall, 5,788 mosquitoes comprising six species were collected, namely Culex pipiens L. (75.1% of total), Aedes caspius (Pallas) (15.2%), Aedes vexans (Meigen) (6.9%), Anopheles maculipennis s.l. Meigen (2.6%), Culiseta annulata (Schrank) (0.2%), and Culex modestus Ficalbi (<0.1%). The relative abundance of these species increased from May until the beginning of July and then decreased, disappearing at the beginning of October. The diel host-seeking patterns and oviposition site-seeking patterns were species specific and were differentially affected by the ecological variables recorded at the day and hour of mosquito collection or two weeks before collection. Knowledge of the seasonal and daily host-seeking patterns of mosquitoes highlights the time periods of the day and the seasons of potential exposure for animals and humans to mosquito-borne pathogens, therefore delineating the best time for the application of preventive measures. Furthermore, knowledge of the oviposition site-seeking activity of the mosquitoes optimizes the capture of gravid females, thereby enhancing the likelihood of detecting pathogens.


Culicidae/physiology , Insect Vectors/physiology , Oviposition , Seasons , Animals , Climate , Ecosystem , Feeding Behavior , Female , Italy , Male , Population Dynamics , Species Specificity
10.
Parasit Vectors ; 8: 177, 2015 Mar 23.
Article En | MEDLINE | ID: mdl-25884876

BACKGROUND: Over the recent decades, container-breeding mosquito species belonging to the genus Aedes have frequently been recorded far from their place of origin. Aedes koreicus was first reported in north-eastern Italy in 2011, in a region endemic for Dirofilaria immitis, the agent of canine heartworm disease. The vector competence of Ae. koreicus for D. immitis was here tested under laboratory conditions, by infecting mosquitoes with a local strain of D. immitis. METHODS: Blood containing 3000 microfilariae/ml was offered to 54 mosquitoes (T group) while 29 were left as a control (C group). Mosquitoes killed at scheduled days post infection (dpi) and naturally dead were divided in head, thorax and abdomen and examined for D. immitis larval stages by dissection under a microscope and molecularly. RESULTS: Of the 45 engorged mosquitoes in T, 32 (71.1%) scored positive for D. immitis larval stages. L3 were found as early as 8 dpi in the Malpighian tubules and then in the thorax, salivary glands, palp and proboscis. At the end of the study a total of 18 mosquitoes developed L3 giving an estimated infection rate at 12 dpi of 68.2% and a vector efficiency index of 25.2%. The rate of mortality in T group within the first 9 days post infection was significantly higher in T group (47.6%) than in C group (8.3%) (p < 0.01). The concordance between microscopy and PCR was high (0.8-0.9), however, a positivity for D. immitis in the head was found molecularly at 13 dpi, three days before microscopy. CONCLUSIONS: Aedes koreicus, a new invasive species for Europe, is most likely a competent vector of D. immitis being of potential relevance in the natural cycle of the parasite. This poses a new threat for animal and human health in endemic areas for dirofilariosis and enhances the risk of spreading the infection in previously non-endemic areas. These results stress the importance of active surveillance and control strategies to minimize the risk of introduction of invasive alien species.


Aedes/parasitology , Dirofilaria immitis/isolation & purification , Dirofilariasis/epidemiology , Dog Diseases/epidemiology , Insect Vectors/parasitology , Animals , Dirofilaria immitis/genetics , Dirofilariasis/parasitology , Dog Diseases/parasitology , Dogs , Europe/epidemiology , Humans , Introduced Species , Italy/epidemiology , Larva
11.
Parasit Vectors ; 6: 292, 2013 Oct 10.
Article En | MEDLINE | ID: mdl-24457085

BACKGROUND: The container breeding species belonging to the genus Aedes (Meigen) are frequently recorded out of their place of origin. Invasive Aedes species are proven or potential vectors of important Arboviruses and their establishment in new areas pose a threat for human and animal health. A new species of exotic mosquito was recorded in 2011 in north-eastern Italy: Aedes (Finlaya) koreicus [Hulecoeteomyia koreica]. The aim of this study was to characterize the biology, the environment and the current distribution of this mosquito in north-eastern Italy. Morphological details useful to discriminate this species from other invasive Aedes mosquitoes are also given (see Additional files). METHODS: All possible breeding sites for larval development were monitored. In addition, ovitraps and traps for adults were used to collect eggs and adults. The mosquitoes (larvae and adults) were identified morphologically and molecularly. Environmental data and climatic variables during the period of mosquito activity (from April to October) were considered. RESULTS: Aedes koreicus was found in 37 municipalities (39.4%) and was detected in 40.2% of places and in 37.3% of larval habitats monitored, in a range of altitude from 173 to 1250 m.a.s.l.. Garden centres were the most common locations (66.7%), followed by streets/squares (57.1%), private gardens (46.4%) and cemeteries (21.1%) (p < 0.01). The main larval habitats were catch basins (48.5%) and artificial water containers (41.8%). As for Aedes albopictus [Stegomyia albopicta], ovitraps were attractive for adult females resulting in the higher rate of positivity (15/21; 71.4%) among breeding sites. The period of Ae. koreicus activity ranged from March 29 to October 29. CONCLUSION: The species is clearly established in the area and is now overlapping with other vectors such as Ae. albopictus and colonizing areas over 800 m.a.s.l, not yet or sporadically reached by the tiger mosquito. The data collected are essential to assess the risk of colonization of other parts of Italy and Europe, as well as the risk of spreading of pathogens transmitted. These findings stress the importance of implementing entomological surveillance for early detection of invasive species, which is necessary for eradication or limitation of its further spread.


Aedes/classification , Aedes/physiology , Ecosystem , Introduced Species , Aedes/genetics , Animals , Female , Insect Vectors , Italy , Legislation as Topic , Reproduction
12.
Parasit Vectors ; 5: 76, 2012 Apr 20.
Article En | MEDLINE | ID: mdl-22520170

BACKGROUND: Dirofilaria immitis and Dirofilaria repens are transmitted by bloodsucking culicid mosquitoes belonging to Culex, Aedes, Ochlerotatus, Anopheles and Mansonia genera. The detection of filarioids in mosquitoes for assessing distribution of vectors and/or of pathogens in a given area (also known as "xenomonitoring"), when based on individual dissection of wild-caught female mosquitoes is time consuming and hardly applicable in large epidemiological surveys. Our study aimed to evaluate the recently developed duplex real-time PCR for screening large number of culicids and to assess their positivity for D. immitis and D. repens in an area where both species are endemic. METHODS: A duplex real-time PCR was used to detect and differentiate D. immitis and D. repens in mosquitoes collected in six provinces of the Veneto region using 43 carbon dioxide-baited traps under the frame of an entomological surveillance program to monitor the vectors of West Nile disease. From early May till October 2010, unfed female mosquitoes (n = 40,892) were captured in 20 selected sites. RESULTS: Mosquitoes identified as Culex pipiens, Ochlerotatus caspius, Aedes vexans and Culex modestus were grouped into 995 pools according to species, day and site of collection (from minimum of 1 to maximum of 57). Out of 955 pools, 23 (2.41 %) scored positive for Dirofilaria spp. of which, 21 (2.2 %) for D. immitis and two (0.21 %) for D. repens. An overall Estimated Rate of Infection (ERI) of 0.06 % was recorded, being higher in Och. caspius and Ae. vexans (i.e., 0.18 % and 0.14 %, respectively). At least one mosquito pool was positive for Dirofilaria spp. in each province with the highest ERI recorded in Vicenza and Padova provinces (i.e., 0.42% and 0.16 %, respectively). Mosquitoes collected in all provinces were positive for D. immitis whereas, only two (i.e., Padova and Rovigo) provinces scored positive for D. repens. All mosquito species, except for Cx. modestus, were positive for D. immitis, whereas D. repens was only found in Cx. pipiens. CONCLUSIONS: The results suggest that both Dirofilaria species are endemic and may occur in sympatry in the examined area. The molecular approach herein used represents a powerful tool for surveillance programs of D. immitis and D. repens in the culicid vectors towards a better understanding of the epidemiology of the infections they cause and their seasonal transmission patterns.


Culicidae/parasitology , Dirofilaria immitis/isolation & purification , Dirofilaria repens/isolation & purification , Dirofilariasis/parasitology , Insect Vectors/parasitology , Real-Time Polymerase Chain Reaction/methods , Animals , DNA, Helminth/chemistry , DNA, Helminth/genetics , Dirofilaria immitis/genetics , Dirofilaria repens/genetics , Dirofilariasis/epidemiology , Female , Humans , Italy/epidemiology , Transition Temperature
13.
Parasit Vectors ; 5: 61, 2012 Mar 27.
Article En | MEDLINE | ID: mdl-22452970

BACKGROUND: Ixodes ricinus, a competent vector of several pathogens, is the tick species most frequently reported to bite humans in Europe. The majority of human cases of Lyme borreliosis (LB) and tick-borne encephalitis (TBE) occur in the north-eastern region of Italy. The aims of this study were to detect the occurrence of endemic and emergent pathogens in north-eastern Italy using adult tick screening, and to identify areas at risk of pathogen transmission. Based on our results, different strategies for tick collection and pathogen screening and their relative costs were evaluated and discussed. METHODS: From 2006 to 2008 adult ticks were collected in 31 sites and molecularly screened for the detection of pathogens previously reported in the same area (i.e., LB agents, TBE virus, Anaplasma phagocytophilum, Rickettsia spp., Babesia spp., "Candidatus Neoehrlichia mikurensis"). Based on the results of this survey, three sampling strategies were evaluated a-posteriori, and the impact of each strategy on the final results and the overall cost reductions were analyzed. The strategies were as follows: tick collection throughout the year and testing of female ticks only (strategy A); collection from April to June and testing of all adult ticks (strategy B); collection from April to June and testing of female ticks only (strategy C). RESULTS: Eleven pathogens were detected in 77 out of 193 ticks collected in 14 sites. The most common microorganisms detected were Borrelia burgdorferi sensu lato (17.6%), Rickettsia helvetica (13.1%), and "Ca. N. mikurensis" (10.5%). Within the B. burgdorferi complex, four genotypes (i.e., B. valaisiana, B. garinii, B. afzelii, and B. burgdorferi sensu stricto) were found. Less prevalent pathogens included R. monacensis (3.7%), TBE virus (2.1%), A. phagocytophilum (1.5%), Bartonella spp. (1%), and Babesia EU1 (0.5%). Co-infections by more than one pathogen were diagnosed in 22% of infected ticks. The prevalences of infection assessed using the three alternative strategies were in accordance with the initial results, with 13, 11, and 10 out of 14 sites showing occurrence of at least one pathogen, respectively. The strategies A, B, and C proposed herein would allow to reduce the original costs of sampling and laboratory analyses by one third, half, and two thirds, respectively. Strategy B was demonstrated to represent the most cost-effective choice, offering a substantial reduction of costs, as well as reliable results. CONCLUSIONS: Monitoring of tick-borne diseases is expensive, particularly in areas where several zoonotic pathogens co-occur. Cost-effectiveness studies can support the choice of the best monitoring strategy, which should take into account the ecology of the area under investigation, as well as the available budget.


Babesia/isolation & purification , Bacteria/isolation & purification , Encephalitis Viruses, Tick-Borne/isolation & purification , Entomology/methods , Ixodes/microbiology , Ixodes/parasitology , Microbiological Techniques/methods , Animals , Babesia/genetics , Bacteria/classification , Bacteria/genetics , Encephalitis Viruses, Tick-Borne/genetics , Entomology/economics , Epidemiologic Measurements , Female , Humans , Italy , Ixodes/virology , Male , Microbiological Techniques/economics , Molecular Sequence Data , Sequence Analysis, DNA
...