Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 169: 115861, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37972470

RESUMEN

Apoptotic death of retinal ganglion cells (RGCs) is a common pathologic feature in different types of optic neuropathy, including ischemic optic neuropathy and glaucoma, ultimately leading to irreversible visual function loss. Potent and effective protection against RGC death is determinative in developing a successful treatment for these optic neuropathies. This study evaluated the neuroprotective effect of a HECT domain-E3 ubiquitin ligase inhibitor, M01, on retinal ganglion cells after ischemic injury. Experimental anterior ischemic optic neuropathy (AION) was induced by photothrombotic occlusion of microvessels supplying optic nerve in rats. M01 was administered (100 mg/Kg and 200 mg/Kg) subcutaneously for three consecutive days after AION induction. Administration of M01 (100 mg/Kg) significantly increased RGC survival and preserved visual function after AION induction. The number of TUNEL-positive cells and ED1-positive cells was significantly decreased, and optic disc edema was reduced considerably after ischemic infarction with M01 treatment. Moreover, M01 effectively ameliorated optic nerve demyelination and enhanced M2 microglial polarization after AION induction. M01 enhanced the expression of nuclear factor erythroid 2-related factor (Nrf2); subsequently, downregulated Thioredoxin interacting protein (TXNIP) expression, inhibited NLR family pyrin domain containing 3 (NLRP3) activation, and further decreased inflammatory factors, interleukin (IL)-1ß and IL-6 in the retina after ischemic injury. These findings suggested that M01 has therapeutic potential by modulating Nrf2 and TXNIP/NLRP3 inflammasome pathways in the retina and optic nerve ischemic damage-related diseases.


Asunto(s)
Neuropatía Óptica Isquémica , Células Ganglionares de la Retina , Ratas , Animales , Neuropatía Óptica Isquémica/tratamiento farmacológico , Neuropatía Óptica Isquémica/patología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Modelos Animales de Enfermedad , Proteínas de Ciclo Celular/metabolismo
2.
Sci Rep ; 12(1): 18228, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309586

RESUMEN

Titanium dioxide (TiO2) is one of the most common compounds on Earth, and it is used in natural forms or engineered bulks or nanoparticles (NPs) with increasing rates. However, the effect of TiO2 NPs on plants remains controversial. Previous studies demonstrated that TiO2 NPs are toxic to plants, because the photocatalytic property of TiO2 produces biohazardous reactive oxygen species. In contrast, another line of evidence suggested that TiO2 NPs are beneficial to plant growth. To verify this argument, in this study, we used seed germination of amaranth and cruciferous vegetables as a model system. Intriguingly, our data suggested that the controversy was due to the dosage effect. The photocatalytic activity of TiO2 NPs positively affected seed germination and growth through gibberellins in a plant-tolerable range (0.1 and 0.2 mg/cm2), whereas overdosing (1 mg/cm2) induced tissue damage. Given that plants are the foundations of the ecosystem; these findings are useful for agricultural application, sustainable development and maintenance of healthy environments.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Plantones , Germinación , Verduras , Ecosistema , Semillas , Titanio/toxicidad , Nanopartículas/toxicidad , Colorante de Amaranto , Nanopartículas del Metal/toxicidad
3.
Biology (Basel) ; 11(9)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36138786

RESUMEN

The purpose of the study is to investigate the effects of brine salting and high-pressure processing (HPP) on the microbial inactivation and quality parameters of mackerel fillets. Mackerel fillets were immersed in 3% and 9% sodium chloride brine for 90 min at refrigerator temperature, and then treated at 300, 400, 500, and 600 MPa pressure for 5 min. The microbial counts and physicochemical qualities of the fish were examined. In comparison with fish fillets treated with brine or high pressure alone, those treated with the combination of brine salting and HPP showed significantly reduced aerobic plate count (APC) and psychrotrophic bacteria count (PBC). The hardness and chewiness of salt-brined fillets were obviously lower than those of the unsalted fillets under the same pressure condition. Thus, brine salting imparted mackerel fillets a softer texture, which compensated for the HPP-induced increased hardness and chewiness of the fillets. The L* (lightness) and ΔE (colour difference) values of the fillets increased with increasing pressure, with or without brine salting. Conversely, a* (redness) values decreased with increasing pressure. The samples treated with 3% brine in combination with 300 or 400 MPa pressure had a* values similar to those of the samples processed under similar HPP conditions alone but showed lower ΔE values than the other groups. Therefore, as a very high pressure would adversely affect the texture and colour of the fish fillets, this study suggests that immersion in an appropriate brine concentration (3%) and treatment with HPP at 400 MPa for 5 min improved or maintained the colour and texture relatively well and produced a synergistic bactericidal effect.

4.
Medicina (Kaunas) ; 58(8)2022 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-36013601

RESUMEN

Background and objective: Dry eye disease (DED) is a relatively common disorder associated with abnormal tear film and the ocular surface that causes ocular irritation, dryness, visual impairment, and damage to the cornea. DED is not a life-threatening disease but causes discomfort and multifactorial disorders in vision that affect daily life. It has been reported that all traditional medicinal plants exhibit anti-inflammatory effects on several diseases. We hypothesized that the decoction ameliorated ocular irritation and decreased cytokine expression in the cornea. This study aimed to investigate the molecular mechanisms of DED and discover a therapeutic strategy to reduce corneal inflammation. Material and Methods: We used a DED mouse model with extraorbital lacrimal gland (ELG) excision and treated the mice with a decoction of five traditional medicines: Lycium chinense, Cuscuta chinensis, Senna tora, Ophiopogon japonicus, and Dendrobium nobile for 3 months. The tear osmolarity and the ocular surface staining were evaluated as indicators of DED. Immunohistochemistry was used to detect the level of inflammation on the cornea. Results: After treatment with the decoction for three months, epithelial erosions and desquamation were reduced, the intact of corneal endothelium was maintained, and tear osmolarity was restored in the eyes. The IL-1ß-associated inflammatory response was reduced in the cornea in the DED model. Conclusions: These data suggested that a mixture of traditional medicines might be a novel therapy to treat DED.


Asunto(s)
Cuscuta , Dendrobium , Síndromes de Ojo Seco , Lycium , Ophiopogon , Animales , Córnea , Modelos Animales de Enfermedad , Síndromes de Ojo Seco/diagnóstico , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Inflamación/complicaciones , Ratones , Lágrimas/química
5.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35216208

RESUMEN

Clinically, acute ischemic symptoms in the eyes are one of the main causes of vision loss, with the associated inflammatory response and oxidative stress being the key factors that cause injury. Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common type of ischemic optic neuropathy (ION); however, there are still no effective or safe treatment options to date. In this study, we investigated the neuroprotective effects of n-butylidenephthalide (BP) treatment in an experimental NAION rodent model (rAION). BP (10 mg/kg) or PBS (control group) were administered on seven consecutive days in the rAION model. Rats were evaluated for visual function by flash visual evoked potentials (FVEPs) at 4 weeks after NAION induction. The retina and optic nerve were removed for histological examination after the rats were euthanized. The molecular machinery of BP treatment in the rAION model was analyzed using Western blotting. We discovered that BP effectively improves retinal ganglion cell survival rates by preventing apoptotic processes after AION induction and reducing the inflammatory response through which blood-borne macrophages infiltrate the optic nerve. In addition, BP significantly preserved the integrity of the myelin sheath in the rAION model, demonstrating that BP can prevent the development of demyelination. Our immunoblotting results revealed the molecular mechanism through which BP mitigates the neuroinflammatory response through inhibition of the NF-κB signaling pathway. Taken together, these results demonstrate that BP can be used as an exceptional neuroprotective agent for ischemic injury.


Asunto(s)
Isquemia/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Neuropatía Óptica Isquémica/tratamiento farmacológico , Anhídridos Ftálicos/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Potenciales Evocados Visuales/efectos de los fármacos , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Masculino , Nervio Óptico/efectos de los fármacos , Ratas , Ratas Wistar , Retina/efectos de los fármacos
6.
Antioxidants (Basel) ; 10(9)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34573098

RESUMEN

Nonarteritic anterior ischemic optic neuropathy (NAION) is one of the most common acute optic neuropathies that affect the over 55-year-old population. NAION causes the loss of visual function, and it has no safe and effective therapy. Bardoxolone methyl (methyl 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate; CDDO-Me; RTA 402) is a semisynthetic triterpenoid with effects against antioxidative stress and inflammation in neurodegeneration and kidney disease that activates the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Moreover, RTA 402 is an FDA-approved compound for the treatment of solid tumors, lymphoid malignancies, melanoma, and chronic kidney disease. Omaveloxolone (RTA 408) is an activator of Nrf2 and an inhibitor of NFκB, possessing antioxidative and anti-inflammatory activities in mitochondrial bioenergetics. RTA 408 is also under clinical investigation for Friedreich ataxia (FA). In this study, a rodent anterior ischemic optic neuropathy (rAION) model induced by photothrombosis was used to examine the therapeutic effects of RTA 402 and RTA 408. Treatment with RTA402 results in antiapoptotic, antioxidative stress, anti-inflammatory, and myelin-preserving effects on retinal ganglion cell (RGC) survival and visual function via regulation of NQO1 and HO-1, reduced IL-6 and Iba1 expression in macrophages, and promoted microglial expression of TGF-ß and Ym1 + 2 in the retina and optic nerve. However, these effects were not observed after RTA 408 treatment. Our results provide explicit evidence that RTA 402 modulates the Nrf2 and NFκB signaling pathways to protect RGCs from apoptosis and maintain the visual function in an rAION model. These findings indicate that RTA 402 may a potential therapeutic agent for ischemic optic neuropathy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA