Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 92
1.
Pharmaceutics ; 16(4)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38675125

New antiviral agents are essential to improving treatment and control of SARS-CoV-2 infections that can lead to the disease COVID-19. Antimicrobial peptoids are sequence-specific oligo-N-substituted glycine peptidomimetics that emulate the structure and function of natural antimicrobial peptides but are resistant to proteases. We demonstrate antiviral activity of a new peptoid (TM9) against the coronavirus, murine hepatitis virus (MHV), as a closely related model for the structure and antiviral susceptibility profile of SARS-CoV-2. This peptoid mimics the human cathelicidin LL-37, which has also been shown to have antimicrobial and antiviral activity. In this study, TM9 was effective against three murine coronavirus strains, demonstrating that the therapeutic window is large enough to allow the use of TM9 for treatment. All three isolates of MHV generated infection in mice after 15 min of exposure by aerosol using the Madison aerosol chamber, and all three viral strains could be isolated from the lungs throughout the 5-day observation period post-infection, with the peak titers on day 2. MHV-A59 and MHV-A59-GFP were also isolated from the liver, heart, spleen, olfactory bulbs, and brain. These data demonstrate that MHV serves as a valuable natural murine model of coronavirus pathogenesis in multiple organs, including the brain.

2.
bioRxiv ; 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37961726

The rise of drug resistance has become a global crisis, with >1 million deaths due to resistant bacterial infections each year. Pseudomonas aeruginosa, in particular, remains a serious problem with limited solutions due to complex resistance mechanisms that now lead to more than 32,000 multidrug-resistant (MDR) infections and over 2,000 deaths annually. While the emergence of resistant bacteria has become concerningly common, identification of useful new drug classes has been limited over the past 40+ years. We found that a potential novel therapeutic, the peptide-mimetic TM5, is effective at killing P. aeruginosa and displays sufficiently low toxicity for mammalian cells to allow for use in treatment of infections. Interestingly, TM5 kills P. aeruginosa more rapidly than traditional antibiotics, within 30-60 minutes in vitro , and is effective against a range of clinical isolates. In vivo , TM5 significantly reduced bacterial load in the lungs within 24 hours compared to untreated mice and demonstrated few adverse effects. Taken together, these observations suggest that TM5 shows promise as an alternative therapy for MDR P. aeruginosa respiratory infections.

3.
Trials ; 24(1): 636, 2023 Oct 04.
Article En | MEDLINE | ID: mdl-37794431

BACKGROUND: A large epidemic, such as that observed with SARS-CoV-2, seriously challenges available hospital capacity, and this would be augmented by infection of healthcare workers (HCW). Bacillus Calmette-Guérin (BCG) is a vaccine against tuberculosis, with protective non-specific effects against other respiratory tract infections in vitro and in vivo. Preliminary analyses suggest that regions of the world with existing BCG vaccination programs have lower incidence and mortality from COVID-19. We hypothesize that BCG vaccination can reduce SARS-CoV-2 infection and disease severity. METHODS: This will be a placebo-controlled adaptive multi-center randomized controlled trial. A total of 1800 individuals considered to be at high risk, including those with comorbidities (hypertension, diabetes, obesity, reactive airway disease, smokers), racial and ethnic minorities, elderly, teachers, police, restaurant wait-staff, delivery personnel, health care workers who are defined as personnel working in a healthcare setting, at a hospital, medical center or clinic (veterinary, dental, ophthalmology), and first responders (paramedics, firefighters, or law enforcement), will be randomly assigned to two treatment groups. The treatment groups will receive intradermal administration of BCG vaccine or placebo (saline) with groups at a 1:1 ratio. Individuals will be tracked for evidence of SARS-CoV-2 infection and severity as well as obtaining whole blood to track immunological markers, and a sub-study will include cognitive function and brain imaging. The majority of individuals will be followed for 6 months, with an option to extend for another 6 months, and the cognitive sub-study duration is 2 years. We will plot Kaplan-Meier curves that will be plotted comparing groups and hazard ratios and p-values reported using Cox proportional hazard models. DISCUSSION: It is expected this trial will allow evaluation of the effects of BCG vaccination at a population level in high-risk healthcare individuals through a mitigated clinical course of SARS-CoV-2 infection and inform policy making during the ongoing epidemic. TRIAL REGISTRATION: ClinicalTrials.gov NCT04348370. Registered on April 16, 2020.


COVID-19 , SARS-CoV-2 , Humans , Aged , COVID-19/prevention & control , BCG Vaccine , Vaccination , Health Personnel , Immunity
4.
Adv Ther (Weinh) ; 5(6)2022 Jun.
Article En | MEDLINE | ID: mdl-36203881

Tuberculosis (TB) is among the greatest public health and safety concerns in the 21st century, Mycobacterium tuberculosis, which causes TB, infects alveolar macrophages and uses these cells as one of its primary sites of replication. The current TB treatment regimen, which consist of chemotherapy involving a combination of 3-4 antimicrobials for a duration of 6-12 months, is marked with significant side effects, toxicity, and poor compliance. Targeted drug delivery offers a strategy that could overcome many of the problems of current TB treatment by specifically targeting infected macrophages. Recent advances in nanotechnology and material science have opened an avenue to explore drug carriers that actively and passively target macrophages. This approach can increase the drug penetration into macrophages by using ligands on the nanocarrier that interact with specific receptors for macrophages. This review encompasses the recent development of drug carriers specifically targeting macrophages actively and passively. Future directions and challenges associated with development of effective TB treatment is also discussed.

5.
Diagnostics (Basel) ; 12(7)2022 Jul 19.
Article En | MEDLINE | ID: mdl-35885648

Tuberculosis is one of the most frequent causes of death in humans worldwide. One of the primary reasons tuberculosis remains a public health threat is that diagnosis can take weeks to months, is often not very sensitive and cannot be accomplished in many remote environments. A rapid, sensitive and inexpensive point-of-care (POC) diagnostic would have a major impact on tuberculosis eradication efforts. The tuberculosis diagnostic system REFtb is based on specific detection of the constitutively expressed ß-lactamase (BlaC) in Mycobacterium tuberculosis using a custom fluorogenic substrate designated as CDG-3. REFtb has potential as a diagnostic for tuberculosis that could be very inexpensive (

6.
Front Immunol ; 13: 880961, 2022.
Article En | MEDLINE | ID: mdl-35634307

COVID-19 is characterized by hyperactivation by inflammatory cytokines and recruitment of macrophages, neutrophils, and other immune cells, all hallmarks of a strong inflammatory response that can lead to severe complications and multi-organ damage. Mortality in COVID-19 patients is associated with a high prevalence of neutrophil extracellular trap (NET) formation and microthrombosis that are exacerbated by hyperglycemia, diabetes, and old age. SARS-CoV-2 infection in humans and non-human primates have revealed long-term neurological consequences of COVID-19, possibly concomitant with the formation of Lewy bodies in the brain and invasion of the nervous system via the olfactory bulb. In this paper, we review the relevance of the human cathelicidin LL-37 in SARS-CoV-2 infections. LL-37 is an immunomodulatory, host defense peptide with direct anti-SARS-CoV-2 activity, and pleiotropic effects on the inflammatory response, neovascularization, Lewy body formation, and pancreatic islet cell function. The bioactive form of vitamin D and a number of other compounds induce LL-37 expression and one might predict its upregulation, could reduce the prevalence of severe COVID-19. We hypothesize upregulation of LL-37 will act therapeutically, facilitating efficient NET clearance by macrophages, speeding endothelial repair after inflammatory tissue damage, preventing α-synuclein aggregation, and supporting blood-glucose level stabilization by facilitating insulin release and islet ß-cell neogenesis. In addition, it has been postulated that LL-37 can directly bind the S1 domain of SARS-CoV-2, mask angiotensin converting enzyme 2 (ACE2) receptors, and limit SARS-CoV-2 infection. Purposeful upregulation of LL-37 could also serve as a preventative and therapeutic strategy for SARS-CoV-2 infections.


COVID-19 , Animals , Antimicrobial Cationic Peptides , Antimicrobial Peptides , Humans , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Cathelicidins
7.
Microbiol Spectr ; 10(3): e0053422, 2022 06 29.
Article En | MEDLINE | ID: mdl-35467395

Staphylococcus aureus is one of the most common pathogens associated with infection in wounds. The current standard of care uses a combination of disinfection and drainage followed by conventional antibiotics such as methicillin. Methicillin and vancomycin resistance has rendered these treatments ineffective, often causing the reemergence of infection. This study examines the use of antimicrobial peptoids (sequence-specific poly-N-substituted glycines) designed to mimic naturally occurring cationic, amphipathic host defense peptides, as an alternative to conventional antibiotics. These peptoids also show efficient and fast (<30 min) killing of methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) at low micromolar concentrations without having apparent cytotoxic side effects in vivo. Additionally, these novel peptoids show excellent efficacy against biofilm formation and detachment for both MSSA and MRSA. In comparison, conventional antibiotics were unable to detach or prevent formation of biofilms. One cationic 12mer, Peptoid 1, shows great promise, as it could prevent formation of and detach biofilms at concentrations as low as 1.6 µM. The use of a bioluminescent S. aureus murine incision wound model demonstrated clearance of infection in peptoid-treated mice within 8 days, conveying another advantage these peptoids have over conventional antibiotics. These results provide clear evidence of the potential for antimicrobial peptoids for the treatment of S. aureus wound infections. IMPORTANCE Staphylococcus aureus resistance is a consistent problem with a large impact on the health care system. Infections with resistant S. aureus can cause serious adverse effects and can result in death. These antimicrobial peptoids show efficient killing of bacteria both as a biofilm and as free bacteria, often doing so in less than 30 min. As such, these antimicrobials have the potential to alleviate the burden that Staphylococcus infections have on the health care system and cause better outcomes for infected patients.


Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Peptoids , Staphylococcal Infections , Animals , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/therapeutic use , Biofilms , Methicillin , Mice , Microbial Sensitivity Tests , Peptoids/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus , Cathelicidins
8.
Aging (Albany NY) ; 14(5): 2174-2193, 2022 03 07.
Article En | MEDLINE | ID: mdl-35256539

BACKGROUND: Tuberculosis (TB) is the archetypical chronic infection, with patients having months of symptoms before diagnosis. In the two years after successful therapy, survivors of TB have a three-fold increased risk of death. METHODS: Guinea pigs were infected with Mycobacterium tuberculosis (Mtb) for 45 days, followed by RRBS DNA methylation analysis. In humans, network analysis of differentially expressed genes across three TB cohorts were visualized at the pathway-level. Serum levels of inflammation were measured by ELISA. Horvath (DNA methylation) and RNA-seq biological clocks were used to investigate shifts in chronological age among humans with TB. RESULTS: Guinea pigs with TB demonstrated DNA hypermethylation and showed system-level similarity to humans with TB (p-value = 0.002). The transcriptome in TB in multiple cohorts was enriched for DNA methylation and cellular senescence. Senescence associated proteins CXCL9, CXCL10, and TNF were elevated in TB patients compared to healthy controls. Humans with TB demonstrate 12.7 years (95% CI: 7.5, 21.9) and 14.38 years (95% CI: 10.23-18.53) of cellular aging as measured by epigenetic and gene expression based cellular clocks, respectively. CONCLUSIONS: In both guinea pigs and humans, TB perturbs epigenetic processes, promoting premature cellular aging and inflammation, a plausible means to explain the long-term detrimental health outcomes after TB.


DNA Methylation , Tuberculosis , Animals , Cellular Senescence/genetics , Epigenesis, Genetic , Guinea Pigs , Humans , Inflammation/genetics , Tuberculosis/complications , Tuberculosis/genetics
9.
Eur Respir J ; 60(3)2022 09.
Article En | MEDLINE | ID: mdl-35169026

BACKGROUND: In vitro, animal model and clinical evidence suggests that tuberculosis is not a monomorphic disease, and that host response to tuberculosis is protean with multiple distinct molecular pathways and pathologies (endotypes). We applied unbiased clustering to identify separate tuberculosis endotypes with classifiable gene expression patterns and clinical outcomes. METHODS: A cohort comprised of microarray gene expression data from microbiologically confirmed tuberculosis patients was used to identify putative endotypes. One microarray cohort with longitudinal clinical outcomes was reserved for validation, as were two RNA-sequencing (seq) cohorts. Finally, a separate cohort of tuberculosis patients with functional immune responses was evaluated to clarify stimulated from unstimulated immune responses. RESULTS: A discovery cohort, including 435 tuberculosis patients and 533 asymptomatic controls, identified two tuberculosis endotypes. Endotype A is characterised by increased expression of genes related to inflammation and immunity and decreased metabolism and proliferation; in contrast, endotype B has increased activity of metabolism and proliferation pathways. An independent RNA-seq validation cohort, including 118 tuberculosis patients and 179 controls, validated the discovery results. Gene expression signatures for treatment failure were elevated in endotype A in the discovery cohort, and a separate validation cohort confirmed that endotype A patients had slower time to culture conversion, and a reduced cure rate. These observations suggest that endotypes reflect functional immunity, supported by the observation that tuberculosis patients with a hyperinflammatory endotype have less responsive cytokine production upon stimulation. CONCLUSION: These findings provide evidence that metabolic and immune profiling could inform optimisation of endotype-specific host-directed therapies for tuberculosis.


Transcriptome , Tuberculosis , Cytokines , Humans , Inflammation , RNA , Tuberculosis/genetics
10.
Med ; 2(3): 217-232, 2021 03 12.
Article En | MEDLINE | ID: mdl-34693385

There is hope that host-directed therapy (HDT) for Tuberculosis (TB) can either shorten treatment duration, help cure drug resistant disease or limit the immunopathology. Many candidate HDT drugs have been proposed, however solid evidence only exists for a few select patient groups. The clinical presentation of TB is variable, with differences in severity, tissue pathology, and bacillary burden. TB clinical phenotypes likely determine the potential benefit of HDT. Underlying TB clinical phenotypes, there are TB "endotypes," defined as distinct molecular profiles, with specific metabolic, epigenetic, transcriptional, and immune phenotypes. TB endotypes can be characterized by either immunodeficiency or pathologic excessive inflammation. Additional factors, like comorbidities (HIV, diabetes, helminth infection), structural lung disease or Mycobacterial virulence also drive TB endotypes. Precise disease phenotyping, combined with in-depth immunologic and molecular profiling and multimodal omics integration, can identify TB endotypes, guide endotype-specific HDT, and improve TB outcomes, similar to advances in cancer medicine.


Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/therapeutic use , Humans , Mycobacterium tuberculosis/genetics , Tuberculosis/drug therapy
11.
Microorganisms ; 9(10)2021 Oct 09.
Article En | MEDLINE | ID: mdl-34683441

Bacille Calmette-Guérin (BCG) vaccination, widely used throughout the world to protect against infant tuberculous meningitis and miliary tuberculosis (TB), can provide broad non-specific protection against infectious respiratory diseases in certain groups. Interest in BCG has seen a resurgence within the scientific community as the mechanisms for non-specific protection have begun to be elucidated. The impact of the COVID-19 pandemic on nearly every aspect of society has profoundly illustrated the pressure that respiratory infections can place on a national healthcare system, further renewing interest in BCG vaccination as a public health policy to reduce the burden of those illnesses. However, the United States does not recommend BCG vaccination due to its variable effectiveness against adult TB, the relatively low risk of Mycobacterium tuberculosis infection in most of the United States, and the vaccine's interference with tuberculin skin test reactivity that complicates TB screening. In this review, we explore the broad immune training effects of BCG vaccination and literature on the effects of BCG vaccination on COVID-19 spread, disease severity, and mortality. We further discuss barriers to scheduled BCG vaccination in the United States and how those barriers could potentially be overcome.

12.
J Bacteriol ; 204(1): JB0021421, 2021 01 01.
Article En | MEDLINE | ID: mdl-34339297

Most phages of Gram-negative hosts encode spanins for disruption of the outer membrane, the last step in host lysis. However, bioinformatic analysis indicates that ∼15% of these phages lack a spanin gene, suggesting they have an alternate way of disrupting the OM. Here, we show that the T7-like coliphage phiKT causes the explosive cell lysis associated with spanin activity despite not encoding spanins. A putative lysis cassette cloned from the phiKT late gene region includes the hypothetical novel gene 28 located between the holin and endolysin genes and supports inducible lysis in E. coli K-12. Moreover, induction of an isogenic construct lacking gene 28 resulted in divalent cation-stabilized spherical cells rather than lysis, implicating gp28 in OM disruption. Additionally, gp28 was shown to complement the lysis defect of a spanin-null λ lysogen. Gene 28 encodes a 56-amino acid cationic protein with predicted amphipathic helical structure and is membrane-associated after lysis. Urea and KCl washes did not release gp28 from the particulate, suggesting a strong hydrophobic membrane interaction. Fluorescence microscopy supports membrane localization of the gp28 protein prior to lysis. Gp28 is similar in size, charge, predicted fold, and membrane association to the human cathelicidin antimicrobial peptide LL-37. Synthesized gp28 behaved similar to LL-37 in standard assays mixing peptide and cells to measure bactericidal and inhibitory effects. Taken together, these results indicate that phiKT gp28 is a phage-encoded cationic antimicrobial peptide that disrupts bacterial outer membranes during host lysis and thus establishes a new class of phage lysis proteins, the disruptins. Significance We provide evidence that phiKT produces an antimicrobial peptide for outer membrane disruption during lysis. This protein, designated as a disruptin, is a new paradigm for phage lysis and has no similarities to other known lysis genes. Although many mechanisms have been proposed for the function of antimicrobial peptides, there is no consensus on the molecular basis of membrane disruption. Additionally, there is no established genetic system to support such studies. Therefore, the phiKT disruptin may represent the first genetically tractable antimicrobial peptide, facilitating mechanistic analyses.

13.
Nat Rev Urol ; 18(10): 611-622, 2021 10.
Article En | MEDLINE | ID: mdl-34131332

Bacillus Calmette-Guérin (BCG) is the most widely used vaccine worldwide and has been used to prevent tuberculosis for a century. BCG also stimulates an anti-tumour immune response, which urologists have harnessed for the treatment of non-muscle-invasive bladder cancer. A growing body of evidence indicates that BCG offers protection against various non-mycobacterial and viral infections. The non-specific effects of BCG occur via the induction of trained immunity and form the basis for the hypothesis that BCG vaccination could be used to protect against the severity of coronavirus disease 2019 (COVID-19). This Perspective article highlights key milestones in the 100-year history of BCG and projects its potential role in the COVID-19 pandemic.


Adjuvants, Immunologic/history , BCG Vaccine/history , COVID-19 Vaccines , COVID-19/prevention & control , Immunotherapy/history , Animals , Cattle , History, 19th Century , History, 20th Century , Humans , Infant
14.
PLoS Pathog ; 17(5): e1009570, 2021 05.
Article En | MEDLINE | ID: mdl-33989345

Mycobacterium tuberculosis (Mtb) has complex and dynamic interactions with the human host, and subpopulations of Mtb that emerge during infection can influence disease outcomes. This study implicates zinc ion (Zn2+) availability as a likely driver of bacterial phenotypic heterogeneity in vivo. Zn2+ sequestration is part of "nutritional immunity", where the immune system limits micronutrients to control pathogen growth, but this defense mechanism seems to be ineffective in controlling Mtb infection. Nonetheless, Zn2+-limitation is an environmental cue sensed by Mtb, as calprotectin triggers the zinc uptake regulator (Zur) regulon response in vitro and co-localizes with Zn2+-limited Mtb in vivo. Prolonged Zn2+ limitation leads to numerous physiological changes in vitro, including differential expression of certain antigens, alterations in lipid metabolism and distinct cell surface morphology. Furthermore, Mtb enduring limited Zn2+ employ defensive measures to fight oxidative stress, by increasing expression of proteins involved in DNA repair and antioxidant activity, including well described virulence factors KatG and AhpC, along with altered utilization of redox cofactors. Here, we propose a model in which prolonged Zn2+ limitation defines a population of Mtb with anticipatory adaptations against impending immune attack, based on the evidence that Zn2+-limited Mtb are more resistant to oxidative stress and exhibit increased survival and induce more severe pulmonary granulomas in mice. Considering that extracellular Mtb may transit through the Zn2+-limited caseum before infecting naïve immune cells or upon host-to-host transmission, the resulting phenotypic heterogeneity driven by varied Zn2+ availability likely plays a key role during early interactions with host cells.


Granuloma/microbiology , Lipidomics , Mycobacterium tuberculosis/physiology , Proteome , Transcriptome , Zinc/deficiency , Adaptation, Physiological , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Granuloma/immunology , Homeostasis , Host-Pathogen Interactions , Humans , Lung/microbiology , Mice , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/immunology , Mycobacterium tuberculosis/pathogenicity , Oxidation-Reduction , Oxidative Stress , Virulence Factors/genetics , Virulence Factors/metabolism
15.
J Biophotonics ; 13(10): e202000176, 2020 10.
Article En | MEDLINE | ID: mdl-32667730

Photodynamic inactivation (PDI) is a promising alternative for combating infections caused by antimicrobial resistant bacteria. Pneumonias are among the most worrisome infections because of their high-mortality rate. Previous studies have demonstrated the feasibility of using PDI with extracorporeal light to treat pneumonia. In this study, we analyzed key parameters for the viability of this treatment, including the selectivity of the photodynamic response for pathogens over host cells. Our results showed that PDI can induce killing of Staphylococcus aureus (of up to 4.18 log for the strain Xen29 and 3.62 log for Xen36) under conditions where little or no toxicity for host cells is observed. We validated pulmonary delivery of the photosensitizer and light in mice, using photobleaching as an indicator, and demonstrated preservation of healthy tissues as evidence of the safety of the protocol. Overall, PDI displays low toxicity on host tissues, making it a promising tool for treatment of pneumonias caused by S. aureus and other important pathogens.


Indocyanine Green , Lung , Photochemotherapy , Staphylococcal Infections , Staphylococcus aureus , Animals , Lighting , Lung/diagnostic imaging , Mice , Photosensitizing Agents/pharmacology , Staphylococcal Infections/therapy
16.
J Clin Invest ; 130(6): 3113-3123, 2020 06 01.
Article En | MEDLINE | ID: mdl-32125282

Mycobacterium tuberculosis (M. tuberculosis) has coevolved with humans for millennia and developed multiple mechanisms to evade host immunity. Restoring host immunity in order to improve outcomes and potentially shorten existing therapy will require identification of the full complement by which host immunity is inhibited. Perturbation of host DNA methylation is a mechanism induced by chronic infections such as HIV, HPV, lymphocytic choriomeningitis virus (LCMV), and schistosomiasis to evade host immunity. Here, we evaluated the DNA methylation status of patients with tuberculosis (TB) and their asymptomatic household contacts and found that the patients with TB have DNA hypermethylation of the IL-2/STAT5, TNF/NF-κB, and IFN-γ signaling pathways. We performed methylation-sensitive restriction enzyme-quantitative PCR (MSRE-qPCR) and observed that multiple genes of the IL-12/IFN-γ signaling pathway (IL12B, IL12RB2, TYK2, IFNGR1, JAK1, and JAK2) were hypermethylated in patients with TB. The DNA hypermethylation of these pathways was associated with decreased immune responsiveness with decreased mitogen-induced upregulation of IFN-γ, TNF, IL-6, CXCL9, CXCL10, and IL-1ß production. The DNA hypermethylation of the IL-12/IFN-γ pathway was associated with decreased IFN-γ-induced gene expression and decreased IL-12-inducible upregulation of IFN-γ. This study demonstrates that immune cells from patients with TB are characterized by DNA hypermethylation of genes critical to mycobacterial immunity resulting in decreased mycobacteria-specific and nonspecific immune responsiveness.


DNA Methylation/immunology , Gene Expression Regulation/immunology , Leukocytes/immunology , Mycobacterium tuberculosis/immunology , Signal Transduction/immunology , Tuberculosis/immunology , Humans , Leukocytes/pathology , Tuberculosis/pathology
17.
Article En | MEDLINE | ID: mdl-32161724

Mycobacterium tuberculosis is primarily a respiratory pathogen. However, 15% of infections worldwide occur at extrapulmonary sites causing additional complications for diagnosis and treatment of the disease. In addition, dissemination of M. tuberculosis out of the lungs is thought to be more than just a rare event leading to extrapulmonary tuberculosis, but rather a prerequisite step that occurs during all infections, producing secondary lesions that can become latent or productive. In this review we will cover the clinical range of extrapulmonary infections and the process of dissemination including evidence from both historical medical literature and animal experiments for dissemination and subsequent reseeding of the lungs through the lymphatic and circulatory systems. While the mechanisms of M. tuberculosis dissemination are not fully understood, we will discuss the various models that have been proposed to address how this process may occur and summarize the bacterial virulence factors that facilitate M. tuberculosis dissemination.


Mycobacterium tuberculosis/pathogenicity , Tuberculosis/microbiology , Animals , Dendritic Cells/microbiology , Disease Models, Animal , Epithelial Cells/microbiology , Humans , Lung/microbiology , Macrophages, Alveolar/microbiology , Tuberculosis/immunology , Tuberculosis/pathology , Tuberculosis, Lymph Node/microbiology , Tuberculosis, Pleural/microbiology , Virulence Factors/physiology
18.
ACS Appl Mater Interfaces ; 12(12): 13657-13670, 2020 Mar 25.
Article En | MEDLINE | ID: mdl-32091877

Light-activated molecular nanomachines (MNMs) can be used to drill holes into prokaryotic (bacterial) cell walls and the membrane of eukaryotic cells, including mammalian cancer cells, by their fast rotational movement, leading to cell death. We examined how these MNMs function in multicellular organisms and investigated their use for treatment and eradication of specific diseases by causing damage to certain tissues and small organisms. Three model eukaryotic species, Caenorhabditis elegans, Daphnia pulex, and Mus musculus (mouse), were evaluated. These organisms were exposed to light-activated fast-rotating MNMs and their physiological and pathological changes were studied in detail. Slow rotating MNMs were used to control for the effects of rotation rate. We demonstrate that fast-rotating MNMs caused depigmentation and 70% mortality in C. elegans while reducing the movement as well as heart rate and causing tissue damage in Daphnia. Topically applied light-activated MNMs on mouse skin caused ulceration and microlesions in the epithelial tissue, allowing MNMs to localize into deeper epidermal tissue. Overall, this study shows that the nanomechanical action of light-activated MNMs is effective against multicellular organisms, disrupting cell membranes and damaging tissue in vivo. Customized MNMs that target specific tissues for therapy combined with spatial and temporal control could have broad clinical applications in a variety of benign and malignant disease states including treatment of cancer, parasites, bacteria, and diseased tissues.


Cell Membrane/drug effects , Eukaryota/drug effects , Nanostructures/chemistry , Neoplasms/drug therapy , Animals , Bacteria/drug effects , Caenorhabditis elegans/drug effects , Cell Membrane/chemistry , Humans , Light , Mice , Nanostructures/radiation effects , Nanostructures/therapeutic use
19.
ACS Nano ; 13(12): 14377-14387, 2019 12 24.
Article En | MEDLINE | ID: mdl-31815423

Multidrug resistance in pathogenic bacteria is an increasing problem in patient care and public health. Molecular nanomachines (MNMs) have the ability to open cell membranes using nanomechanical action. We hypothesized that MNMs could be used as antibacterial agents by drilling into bacterial cell walls and increasing susceptibility of drug-resistant bacteria to recently ineffective antibiotics. We exposed extensively drug-resistant Klebsiella pneumoniae to light-activated MNMs and found that MNMs increase the susceptibility to Meropenem. MNMs with Meropenem can effectively kill K. pneumoniae that are considered Meropenem-resistant. We examined the mechanisms of MNM action using permeability assays and transmission electron microscopy, finding that MNMs disrupt the cell wall of extensively drug-resistant K. pneumoniae, exposing the bacteria to Meropenem. These observations suggest that MNMs could be used to make conventional antibiotics more efficacious against multi-drug-resistant pathogens.


Cell Wall/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , Klebsiella pneumoniae/drug effects , Meropenem/pharmacology , Nanoparticles/toxicity , Animals , Anti-Bacterial Agents/pharmacology , Cell Death/drug effects , Cell Line , Klebsiella pneumoniae/radiation effects , Klebsiella pneumoniae/ultrastructure , Light , Macrophages/cytology , Macrophages/drug effects , Meropenem/chemistry , Mice , Microbial Sensitivity Tests , Microbial Viability/drug effects , Movement
20.
Biomed Opt Express ; 10(10): 5445-5460, 2019 Oct 01.
Article En | MEDLINE | ID: mdl-31646057

Tuberculosis is one of the deadliest infectious diseases worldwide. New tools to study pathogenesis and monitor subjects in pre-clinical studies to develop treatment regimens are critical for progress. We developed an improved optical system for detecting bacteria in lungs of mice using internal illumination. We present a computational optical model of the full mouse torso to characterize the optical system. Simulated theoretical limits for the lowest detectable bacterial load support the experimental improvements with an internal illumination source, and suggest that protocol improvements could further lower the detection threshold.

...