RESUMEN
The tolerable aluminum (Al) intake levels for humans are constantly under review by regulatory agencies due to novel pre-clinical evidence on the neurotoxicity of prolonged Al exposure; however, little is known about the effects of Al on the spinal cord. This study aimed to investigate potential adverse effects on both spinal cord and systemic biochemical balance after prolonged exposure to a low dose of Al. Twenty adult rats were distributed in the control (distilled water) and exposed group (8.3 mg of AlCl3/kg/day). After 60 days, both blood and spinal cord samples were collected for oxidative stress and proteomic analyses. In plasma and erythrocytes, glutathione level was not different between groups; however, exposure to AlCl3 significantly decreased glutathione level in the spinal cord. Thiobarbituric acid reactive substances levels in the plasma and spinal cord of animals from the control group were significantly lower than those animals exposed to AlCl3. Exposure to AlCl3 significantly modulated the expression of proteins associated with the cell cycle, stimulus-response, cytoskeleton, nervous system regulation, protein activity, and synaptic signaling. Therefore, prolonged exposure to a low dose of Al triggered oxidative stress and proteomic changes that may affect spinal cord homeostasis.
Asunto(s)
Aluminio , Proteómica , Humanos , Ratas , Animales , Aluminio/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Glutatión/metabolismo , Médula Espinal/metabolismoRESUMEN
This study aimed to identify the landscape of current aluminum toxicity based on knowledge mapping of the 100 most-cited articles on toxicological aspects of aluminum in biological organisms. The research was searched in the Web of Science Core Collection (WoS-CC) with publications between 1945 and 2022. Data regarding authorship, title, journal, year of publication, citation count, country, keywords, study design, and research hotspots were extracted and all elected articles were analyzed. Our results showed that among the articles selected, literature review and in vivo studies were the most common study designs. The USA and England were found as the countries with most publications. Alzheimer's disease (AD), aluminum, and neurotoxicity were found as the most frequent keywords. The articles most cited in world literature suggested that aluminum exposure is associated with Alzheimer's disease, Parkinson's disease (PD), dialysis encephalopathy, amyotrophic lateral sclerosis, neurodegeneration changes, cognitive impairment, such as bone damage, oxidative alterations, and cytotoxicity.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Humanos , Bibliometría , Aluminio/toxicidad , Enfermedad de Alzheimer/inducido químicamente , Proyectos de InvestigaciónRESUMEN
Hippocampus is the brain area where aluminum (Al) accumulates in abundance and is widely associated with learning and memory. In the present study, we evaluate behavioral, tissue, and proteomic changes in the hippocampus of Wistar rats caused by exposure to doses that mimic human consumption of aluminum chloride (AlCl3) in urban areas. For this, male Wistar rats were divided into two groups: Control (distilled water) and AlCl3 (8.3 mg/kg/day), both groups were exposed orally for 60 days. After the Al exposure protocol, cognitive functions were assessed by the Water maze test, followed by a collection for analysis of the global proteomic profile of the hippocampus by mass spectrometry. Aside from proteomic analysis, we performed a histological analysis of the hippocampus, to the determination of cell body density by cresyl violet staining in Cornu Ammonis fields (CA) 1 and 3, and hilus regions. Our results indicated that exposure to low doses of aluminum chloride triggered a decreased cognitive performance in learning and memory, being associated with the deregulation of proteins expression, mainly those related to the regulation of the cytoskeleton, cellular metabolism, mitochondrial activity, redox regulation, nervous system regulation, and synaptic signaling, reduced cell body density in CA1, CA3, and hilus.