Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Stem Cell Rev Rep ; 20(1): 206-217, 2024 01.
Article En | MEDLINE | ID: mdl-37922107

Strategies to improve hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow can have a pivotal role in addressing iatrogenic bone-marrow insufficiency from chemo(radio)therapy and overcoming peripheral blood stem cell transplantation (PBSCT) limitations such as insufficient mobilization. Granulocyte-colony stimulating factor (G-CSF) represents the standard mobilization strategy for HSPC and has done so for more than three decades since its FDA approval. Its association with non-G-CSF agents is often employed for difficult HSPC mobilization. However, obtaining a synergistic effect between the two classes is limited by different timing and mechanisms of action. Based on our previous in vitro results, we tested the mobilization potential of human chorionic gonadotropin (HCG), alone and in combination with G-CSF in vivo in a murine study. Our results show an improved mobilization capability of the combination, which seems to act synergistically in stimulating hematopoiesis. With the current understanding of the dynamics of HSPCs and their origins in more primitive cells related to the germline, new strategies to employ the mobilization of hematopoietic progenitors using chorionic gonadotropins could soon become clinical practice.


Peripheral Blood Stem Cell Transplantation , Humans , Animals , Mice , Granulocyte Colony-Stimulating Factor/pharmacology , Disease Models, Animal , Hematopoietic Stem Cells/metabolism , Chorionic Gonadotropin/pharmacology
2.
Diagnostics (Basel) ; 13(14)2023 Jul 24.
Article En | MEDLINE | ID: mdl-37510199

INTRODUCTION: The introduction of robotic-guided procedures in surgical techniques has brought an increase in the accuracy and control of resections. Surgery has evolved as a technique since the development of laparoscopy, which has added to the visualisation of the peritoneal cavity from a different perspective. Multi-armed robot associated with real-time intraoperative imaging devices brings important manoeuvrability and dexterity improvements in certain surgical fields. MATERIALS AND METHODS: The present study is designed to synthesise the development of imaging techniques with a focus on ultrasonography in robotic surgery in the last ten years regarding abdominal surgical interventions. RESULTS: All studies involved abdominal surgery. Out of the seven studies, two were performed in clinical trials. The other five studies were performed on organs or simulators and attempted to develop a hybrid surgical technique using ultrasonography and robotic surgery. Most studies aim to surgically identify both blood vessels and nerve structures through this combined technique (surgery and imaging). CONCLUSIONS: Ultrasonography is often used in minimally invasive surgical techniques. This adds to the visualisation of blood vessels, the correct identification of tumour margins, and the location of surgical instruments in the tissue. The development of ultrasound technology from 2D to 3D and 4D has brought improvements in minimally invasive and robotic surgical techniques, and it should be further studied to bring surgery to a higher level.

3.
Stem Cell Rev Rep ; 18(8): 2549-2565, 2022 12.
Article En | MEDLINE | ID: mdl-35841518

Stem cells are at the basis of tissue homeostasis, hematopoiesis and various regenerative processes. Epigenetic changes in their somatically imprinted genes, prolonged exposure to mutagens/carcinogens or alteration of their niche can lead to the development of an enabling environment for tumor growth and progression. The involvement of stem cells in both health and disease becomes even more compelling with ontogeny as embryonic and extraembryonic stem cells which persist into adulthood in well established and specific niche may have distinct implications in tumorigenesis. Immune surveillance plays an important role in this interplay since the response of immune cells toward the oncogenic process can range from reactivity to placidity and even complicity, being orchestrated by intercellular molecular dialogues with the other key players of the tumor microenvironment. With the current understanding that every developing and adult tissue contains inherent stem and progenitor cells, in this manuscript we review the most relevant interactions carried out between the stem cells, tumor cells and immune cells in a bottom-up incursion through the tumor microenvironment beginning from the perivascular niche and going through the tumoral parenchyma and the related stroma. With the exploitation of various factors that influence the behavior of immune effectors toward stem cells and other resting cells in their niche, new therapeutic strategies to tackle the polarization of immune effectors toward a more immunogenic phenotype may arise.


Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Neoplasms/genetics , Hematopoiesis , Stem Cells , Epigenesis, Genetic
5.
Sci Rep ; 12(1): 10874, 2022 06 27.
Article En | MEDLINE | ID: mdl-35760972

A variety of medical procedures are classified as aerosol generating. However there is no consensus on whether some procedures such as nasopharyngeal swabbing can generate aerosols. During specimen collection, the contact of the nasopharyngeal swab with the respiratory mucosa often triggers defense reflexes such as sneezing and coughing, which generate airborne particles. The accumulation and persistence of a viral load from infectious aerosols for hours after their generation can represent a threat for increased spread of infection. Prospective observational cohort study in individuals tested for RT-PCR SARS-CoV-2 from July to October 2020. Participants were evaluated for the prevalence of aerosol generating events (AGEs) triggered by the nasopharyngeal swabbing. We used descriptive statistics to analyze the data set and the chi-square test for AGE comparison between sexes. Among 1239 individuals, we reported 264 in which AGEs were triggered by the specimen collection. 97 individuals tested positive for SARS-CoV-2, of which 20 presented AGEs. There were no significant differences in the occurrence of AGEs by age, but significant differences have been identified between sex and the occurrence of AGEs both in the SARS-CoV-2 negative and SARS-CoV-2 positive individuals. The prevalence of coughing or sneezing triggered by the nasopharyngeal swabbing was high among tested individuals. Testing facilities should ensure adequate availability of personal protective equipment (PPE) for the testing personnel, ensure appropriate ventilation of the rooms, and develop additional strategies to limit the risk of contamination of other participants to the testing session from potentially infectious and persistent aerosols.


COVID-19 , Pandemics , Aerosols , COVID-19/diagnosis , COVID-19/epidemiology , Cough/etiology , Humans , Nasopharynx , Prospective Studies , SARS-CoV-2 , Sneezing
6.
Pharmacol Rep ; 74(2): 425-430, 2022 Apr.
Article En | MEDLINE | ID: mdl-35031970

Currently, the world is facing a pandemic of the new coronavirus SARS-CoV-2 that causes COVID-19. Identifying key targets in the viral infection lifecycle is urgently needed for designing therapeutic strategies to combat the virus. Furin is a subtilisin-like proprotein convertase with diverse cellular functions. Emerging evidence suggests that furin plays a critical role in the activation and/or infectivity of SARS-CoV-2. In this perspective, we discuss the potential role of furin in the entry SARS-CoV-2 into host cells. Furthermore, we evaluate available peptide and non-peptide furin inhibitors and potential outcomes, including immune responses.


COVID-19 Drug Treatment , Furin , Humans , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
7.
Int J Mol Sci ; 22(2)2021 Jan 19.
Article En | MEDLINE | ID: mdl-33477745

Angiogenesis is a broad spread term of high interest in regenerative medicine and tissue engineering including the dental field. In the last two decades, researchers worldwide struggled to find the best ways to accelerate healing, stimulate soft, and hard tissue remodeling. Stem cells, growth factors, pathways, signals, receptors, genetics are just a few words that describe this area in medicine. Dental implants, bone and soft tissue regeneration using autologous grafts, or xenografts, allografts, their integration and acceptance rely on their material properties. However, the host response, through its vascularization, plays a significant role. The present paper aims to analyze and organize the latest information about the available dental stem cells, the types of growth factors with pro-angiogenic effect and the possible therapeutic effect of enhanced angiogenesis in regenerative dentistry.


Dentistry/trends , Neovascularization, Physiologic/genetics , Regeneration/physiology , Regenerative Medicine/trends , Autografts/transplantation , Humans , Tissue Engineering , Transplantation, Homologous/trends
9.
J Cell Mol Med ; 25(1): 591-595, 2021 01.
Article En | MEDLINE | ID: mdl-33211389

COVID-19 can present with a variety of clinical features, ranging from asymptomatic or mild respiratory symptoms to fulminant acute respiratory distress syndrome (ARDS) depending on the host's immune responses and the extent of the associated pathologies. This implies that several measures need to be taken to limit severely impairing symptoms caused by viral-induced pathology in vital organs. Opioids are most exploited for their analgesic effects but their usage in the palliation of dyspnoea, immunomodulation and lysosomotropism may represent potential usages of opioids in COVID-19. Here, we describe the mechanisms involved in each of these potential usages, highlighting the benefits of using opioids in the treatment of ARDS from SARS-CoV-2 infection.


Analgesics, Opioid/therapeutic use , COVID-19 Drug Treatment , COVID-19/etiology , Respiratory Distress Syndrome/drug therapy , Analgesics, Opioid/administration & dosage , COVID-19/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Dyspnea/drug therapy , Dyspnea/etiology , Humans , Immunomodulation/drug effects , Immunomodulation/physiology , Lysosomes/drug effects , Receptors, Opioid/immunology
10.
Eur J Pharmacol ; 891: 173694, 2021 Jan 15.
Article En | MEDLINE | ID: mdl-33130275

In the context of the current SARS-CoV-2 pandemic, associations of drugs which interfere with specific steps of the viral infectious cycle are currently being exploited as therapeutic strategies since a specific treatment by vaccination is still unavailable. A widespread association of repurposed agents is the combination of the antimalarial drug Hydroxychloroquine and the macrolide antibiotic Azithromycin in the setting of clinical trials. But a closer analysis of their mechanism of action suggests that their concomitant administration may be impractical, and this is supported by experimental data with other agents of the same classes. However a sequential administration of the lysosomotropic antimalarial with the addition of the macrolide proton pump inhibitor after the first has reached a certain threshold could better exploit their antiviral potential.


Azithromycin/pharmacology , COVID-19 Drug Treatment , COVID-19 , Drug Repositioning , Hydroxychloroquine/pharmacology , SARS-CoV-2 , Anti-Bacterial Agents/pharmacology , Antimalarials/pharmacology , COVID-19/virology , Drug Interactions/physiology , Drug Repositioning/methods , Drug Repositioning/trends , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
12.
Biochimie ; 177: 50-52, 2020 Oct.
Article En | MEDLINE | ID: mdl-32805303

Various interferon (IFN)-inducible transmembrane (IFITM) proteins are known to be expressed in human tissues though only IFITM 1-3 are inducible by IFN. Numerous studies have shown that activation of IFITM3 could suppress infection by influenza and coronaviruses such as the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). In view of the potential application of IFITM proteins' induction to target SARS-CoV-2 infection that causes COVID-19, this article layout insights into the known antiviral mechanisms and therapeutic agents related to IFITM. Blocking viral entry through various mechanisms and the potential application of the FDA approved immunosuppressant agent, mycophenolic acid, as inducer of IFITM3 are among those discussed.


Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Interferons/pharmacology , Membrane Proteins/drug effects , Mycophenolic Acid/pharmacology , Pneumonia, Viral/drug therapy , RNA-Binding Proteins/drug effects , Animals , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Humans , Immunosuppressive Agents/pharmacology , Membrane Proteins/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , RNA-Binding Proteins/immunology , SARS-CoV-2 , COVID-19 Drug Treatment
13.
Mini Rev Med Chem ; 20(18): 1900-1907, 2020.
Article En | MEDLINE | ID: mdl-32767936

The global spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that causes COVID-19 has become a source of grave medical and socioeconomic concern to human society. Since its first appearance in the Wuhan region of China in December 2019, the most effective measures of managing the spread of SARS-CoV-2 infection have been social distancing and lockdown of human activity; the level of which has not been seen in our generations. Effective control of the viral infection and COVID-19 will ultimately depend on the development of either a vaccine or therapeutic agents. This article highlights the progresses made so far in these strategies by assessing key targets associated with the viral replication cycle. The key viral proteins and enzymes that could be targeted by new and repurposed drugs are discussed.


COVID-19/therapy , Coronavirus 3C Proteases/antagonists & inhibitors , RNA Helicases/antagonists & inhibitors , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Antibodies/therapeutic use , Antiprotozoal Agents/therapeutic use , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Humans , Nucleosides/analogs & derivatives , Nucleosides/metabolism , Nucleosides/therapeutic use , Protease Inhibitors/therapeutic use , RNA Helicases/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology
15.
Eur J Pharmacol ; 882: 173288, 2020 Sep 05.
Article En | MEDLINE | ID: mdl-32561291

In December 2019, many pneumonia cases with unidentified sources appeared in Wuhan, Hubei, China, with clinical symptoms like viral pneumonia. Deep sequencing analysis of samples from lower respiratory tract revealed a novel coronavirus, called 2019 novel coronavirus (2019-nCoV). Currently there is a rapid global spread. World Health Organization declare the disease a pandemic condition. The pathologic source of this disease was a new RNA virus from Coronaviridae family, which was named COVID-19. SARS-CoV-2 entry starts with the binding of the spike glycoprotein expressed on the viral envelope to ACE2 on the alveolar surface followed by clathrin-dependent endocytosis of the SARS-CoV-2 and ACE2 complex. SARS-CoV-2 enters the cells through endocytosis process, which is possibly facilitated, via a pH dependent endosomal cysteine protease cathepsins. Once inside the cells, SARS-CoV-2 exploits the endogenous transcriptional machinery of alveolar cells to replicate and spread through the entire lung. Endosomal acidic pH for SARS-CoV-2 processing and internalization is critical. After entering the cells, it possibly activates or hijack many intracellular pathways in favor of its replication. In the current opinion article, we will explain the possible involvement of unfolded protein response as a cellular stress response to the SARS-CoV-2 infection.


Alveolar Epithelial Cells/drug effects , Coronavirus Infections/drug therapy , Endoplasmic Reticulum/drug effects , Ionophores/pharmacology , Pneumonia, Viral/drug therapy , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/metabolism , COVID-19 , Clathrin-Coated Vesicles/drug effects , Clathrin-Coated Vesicles/metabolism , Coronavirus Infections/virology , Endocytosis/drug effects , Endoplasmic Reticulum/metabolism , Endosomes/drug effects , Endosomes/metabolism , Humans , Ionophores/therapeutic use , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Unfolded Protein Response/drug effects , COVID-19 Drug Treatment
19.
Stem Cell Rev Rep ; 15(4): 519-529, 2019 08.
Article En | MEDLINE | ID: mdl-31123983

Fetal-maternal microchimerism describes the acquisition of fetal stem cells (FSC) by the mother during pregnancy and their long-term persistence after parturition. FSC may engraft in a variety of maternal tissues especially if there is organ/tissue injury, but their role and mechanism of persistence still remains elusive. Clinical applications due to their pluripotency, immunomodulatory effects and accessibility make them good candidates for ex-vivo manipulation and autologous therapies. The hair follicles contain a distinctive niche for pluripotent stem cells (PSC). To date, there is no published evidence of fetal microchimerism in the hair follicle. In our study, follicular unit extraction (FUE) technique allowed easy stem cell cultures to be obtained while simple hair follicle removal by pull-out technique failed to generate stem cells in culture. We identified microchimeric fetal stem cells within the primitive population of maternal stem cells isolated from the hair follicles with typical mesenchymal phenotype, expression of PSC genes and differentiation potential towards osteocytes, adypocites and chondrocytes. This is the first study to isolate fetal microchimeric stem cells in adult human hair long after parturition. We presume a sanctuary partition mechanism with PSC of the mother deposited during early embryogenesis could explain their long-term persistence.


Cell Differentiation , Chimerism , Fetal Stem Cells , Hair Follicle , Adult , Female , Fetal Stem Cells/cytology , Fetal Stem Cells/metabolism , Fetus/cytology , Fetus/metabolism , Hair Follicle/cytology , Hair Follicle/metabolism , Humans , Pregnancy
20.
Stem Cell Rev Rep ; 14(5): 632-641, 2018 Oct.
Article En | MEDLINE | ID: mdl-29948753

Chimerism occurs naturaly throughout gestation and can also occur as a consequence of transfusion and transplantation therapy. It consists of the acquisition and long-term persistence of a genetically distinct population of allogenic cells inside another organism. Previous reports have suggested that feto-maternal microchimerism could exert a beneficial effect on the treatment of hematological and solid tumors in patients treated by PBSCT. In this review we report the mechanism of transplacental fetal stem cell trafficking during pregnancy and the effect of their long-term persistence on autoimmunity, GVHD, PBSCT, cancer and stem cell treatment.


Autoimmune Diseases/physiopathology , Chimerism , Fetal Stem Cells/physiology , Female , Fetal Stem Cells/pathology , Fetal Stem Cells/transplantation , Fetus/cytology , Fetus/physiology , Humans , Placenta/cytology , Placenta/physiology , Pregnancy
...