Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Talanta ; 281: 126842, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39305759

RESUMEN

Chikungunya fever, caused by Chikungunya virus (CHIKV) exhibits clinical features that mimic that of other arbovirus infections such as dengue. CHIKV Envelope 2 (E2) protein, an antigenic epitope of CHIKV, has been identified as an ideal marker for diagnostics. The current CHIKV antigen detection tests are largely based on antibodies but are beleaguered by issues such as sensitivity to high temperature, expensive and prone to batch-to-batch variations. Aptamers are suitable alternatives to antibodies as they are cheaper and have no batch-to-batch variations compared to antibodies. In this study, DNA aptamer selection against CHIKV E2 proteins was performed using two different randomized ssDNA libraries. Chik-2 (96-mer) and Chik-3 (76-mer) were isolated from these two libraries and were identified as the potential aptamers against CHIKV E2 protein. The binding affinity of Chik-2 and Chik-3 against CHIKV E2 protein was estimated at 177.5 ± 32.69 nM and 30.01 ± 3.60 nM, respectively. A sandwich ELASA was developed, and this assay showed a detection limit of 2.17 x 103 PFU/mL. The sensitivity and specificity of the assay were 80 % and 100 %, respectively. The assay showed no cross-reactivity with dengue-positive samples, demonstrating the enormous diagnostic potential of these aptamers for the detection of CHIKV.

2.
Analyst ; 149(19): 4770-4788, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39221970

RESUMEN

Aptamers are molecular recognition elements that have been extensively deployed in a wide array of applications ranging from diagnostics to therapeutics. Due to their unique properties as compared to antibodies, aptamers were also largely isolated during the COVID-19 pandemic for multiple purposes. Typically generated by conventional SELEX, the inherent drawbacks of the process including the time-consuming, cumbersome and resource-intensive nature catalysed the move to adopt in silico approaches to isolate aptamers. Impressive performances of these in silico-derived aptamers in their respective assays have been documented thus far, bearing testimony to the huge potential of the in silico approaches, akin to the traditional SELEX in isolating aptamers. In this study, we provide an overview of the in silico selection of aptamers against SARS-CoV-2 by providing insights into the basic steps involved, which comprise the selection of the initial single-stranded nucleic acids, determination of the secondary and tertiary structures and in silico approaches that include both rigid docking and molecular dynamics simulations. The different approaches involving aptamers against SARS-CoV-2 were illuminated and the need to verify these aptamers by experimental validation was also emphasized. Cognizant of the need to continuously improve aptamers, the strategies embraced thus far for post-in silico selection modifications were enumerated. Shedding light on the steps involved in the in silico selection can set the stage for further improvisation to augment the functionalities of the aptamers in the future.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Simulación de Dinámica Molecular , SARS-CoV-2 , Técnica SELEX de Producción de Aptámeros , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Aptámeros de Nucleótidos/química , Humanos , COVID-19/virología , COVID-19/diagnóstico , Técnica SELEX de Producción de Aptámeros/métodos , Simulación del Acoplamiento Molecular , Simulación por Computador , Betacoronavirus/aislamiento & purificación , Pandemias , Conformación de Ácido Nucleico , Neumonía Viral/virología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Antivirales/química
3.
Funct Integr Genomics ; 24(5): 160, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264475

RESUMEN

Mycobacterium tuberculosis (MTB) is a pathogen that is known for its ability to persist in harsh environments and cause chronic infections. Understanding the regulatory networks of MTB is crucial for developing effective treatments. Small regulatory RNAs (sRNAs) play important roles in gene expression regulation in all kingdoms of life, and their classification based solely on genomic location can be imprecise due to the computational-based prediction of protein-coding genes in bacteria, which often neglects segments of mRNA such as 5'UTRs, 3'UTRs, and intercistronic regions of operons. To address this issue, our study simultaneously discovered genomic features such as TSSs, UTRs, and operons together with sRNAs in the M. tuberculosis H37Rv strain (ATCC 27294) across multiple stress conditions. Our analysis identified 1,376 sRNA candidates and 8,173 TSSs in MTB, providing valuable insights into its complex regulatory landscape. TSS mapping enabled us to classify these sRNAs into more specific categories, including promoter-associated sRNAs, 5'UTR-derived sRNAs, 3'UTR-derived sRNAs, true intergenic sRNAs, and antisense sRNAs. Three of these sRNA candidates were experimentally validated using 3'-RACE-PCR: predictedRNA_0240, predictedRNA_0325, and predictedRNA_0578. Future characterization and validation are necessary to fully elucidate the functions and roles of these sRNAs in MTB. Our study is the first to simultaneously unravel TSSs and sRNAs in MTB and demonstrate that the identification of other genomic features, such as TSSs, UTRs, and operons, allows for more accurate and specific classification of sRNAs.


Asunto(s)
Mycobacterium tuberculosis , Operón , ARN Bacteriano , ARN Pequeño no Traducido , Sitio de Iniciación de la Transcripción , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , ARN Pequeño no Traducido/genética , ARN Bacteriano/genética , Regiones no Traducidas 5' , Regulación Bacteriana de la Expresión Génica , Estrés Fisiológico/genética , Genoma Bacteriano , Regiones no Traducidas 3' , Anotación de Secuencia Molecular
4.
Mikrochim Acta ; 191(6): 346, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802696

RESUMEN

Aptamers are a class of molecular recognition elements that exhibit high binding affinity and specificity against their respective targets. In view of the many advantages aptamers harbor over their counterpart antibodies, we were impelled to isolate an RNA aptamer against progesterone receptor, particularly its DNA binding domain. A total of eight SELEX cycles were executed against the recombinant Progesterone Receptor DNA-binding domain (PR DBD). The RNA-protein complex in the gel shift assay was subjected to crush and soak method to elute the binders prior to conventional sequencing, the step of which was based upon to coin the term CRUSOAK-SELEX. The sequencing revealed three different classes of sequences, with one class termed, PRapt-3, showing the strongest binding against PR DBD. The dissociation constant of PRapt-3 RNA aptamer was estimated at 380 nM ± 35 nM. PRapt-3 was successfully used to develop aptamer-based diagnostic assays such as ELASA, aptamer-based dot blot, and aptamer-based western blot. The prominent highlight is the performance of the aptamer in aptacytostaining, which was unachievable with antibodies. Compared to its counterpart antibodies, PRapt-3 has a better penetration capacity in aptahistostaining using the formalin-fixed paraffin-embedded (FFPE) breast cancer cells and tissue blocks. This study represents the first ever demonstration of an aptamer against progesterone receptor and its diagnostic capacity.


Asunto(s)
Aptámeros de Nucleótidos , Receptores de Progesterona , Técnica SELEX de Producción de Aptámeros , Aptámeros de Nucleótidos/química , Receptores de Progesterona/metabolismo , Humanos , Técnica SELEX de Producción de Aptámeros/métodos , Femenino
5.
Indian J Microbiol ; 64(1): 198-204, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38468749

RESUMEN

The Serratia marcescens is a Gram-negative bacterium from the Enterobacteriaceae family. Recently, S. marcescens have evolved to become a versatile and opportunistic pathogen. Furthermore, this bacterium is also a multi-drug resistant pathogen exhibiting Extended-Spectrum Beta-Lactamases (ESBL) activity. This bacterium is highly associated with infections in healthcare settings and even leads to death. Hence, an advanced approach based on non-protein coding RNA (npcRNA) of S. marcescens was considered in this study to understand its regulatory roles in virulence, pathogenesis, and the differential expression of these transcripts in various growth phases of the bacterium. BLASTn search of known npcRNAs from Salmonella typhi, Escherichia coli, and Yersinia pestis against S. marcescens was performed to discover putative conserved homologous transcripts. The novelty of these putative homologous npcRNAs was verified by screening through the Rfam web tool. The target mRNA for the homologs was predicted via the TargetRNA2 webtool to understand the possible regulatory roles of these transcripts. The npcRNA homologs, which were predicted to regulate virulence target mRNA were assessed for their expression profile at different growth stages via reverse transcription PCR and the band intensity was quantitatively analysed using the Image J tool. The known npcRNA ssrS, from S. typhi showed expression in S. marcescens during three growth stages (lag, log, and stationary). Expression was observed to be high during the lag phase followed by a similarly low-level expression during the log and no expression during stationary phase. This ssrS homolog was predicted to regulate mRNA that encodes for protein FliR, which is associated with virulence. This is a preliminary study that lay the foundation for further elucidation of more virulence-associated npcRNAs that are yet to be discovered from S. marcescens, which can be useful for diagnostics and therapeutic applications. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01160-y.

6.
Microbiol Spectr ; 11(4): e0008823, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37272795

RESUMEN

Due to the general symptoms presented by the Chikungunya virus (CHIKV)-infected patients, a laboratory test is needed to differentiate CHIKV from other viral infections. The reverse transcription-quantitative real-time PCR (RT-qPCR) is a rapid and sensitive diagnostic tool, and several assays have been developed for detecting and quantifying CHIKV. Since real-time amplification efficiency varies within and between laboratories, an assay must be validated before being used on patient samples. In this study, the diagnostic performance of a TaqMan RT-qPCR assay was evaluated using synthetic RNA and archived patient samples. The cutoff quantification cycle (Cq) value for the assay was determined by experimental evidence. We found the in-house assay was highly sensitive, with a detection limit of 3.95 RNA copies/reaction. The analytical specificity of the assay was 100%. The analytical cutoff Cq value was 37, corresponding to the mean Cq value of the detection limit. Using archived samples characterized previously, the sensitivity and specificity of the assay were 76% and 100%, respectively. The in-house assay was also compared with a commercial assay, and we found that the in-house assay had higher sensitivity. Although further evaluation with prospective patient samples is needed in the future, this validated RT-qPCR was sensitive and specific, which shows its potential to detect CHIKV in clinical samples. IMPORTANCE Chikungunya virus causes chikungunya fever, a disease characterized by fever, rash, and joint pain. In the early phase of infection, chikungunya fever is always misdiagnosed as other arbovirus infections, such as dengue. Laboratory tests such as RT-qPCR are therefore necessary to confirm CHIKV infection. We evaluated the performance of an in-house RT-qPCR assay, and our study shows that the assay could detect CHIKV in clinical samples. We also show the cutoff determination of the assay, which provides important guidance to scientists or researchers when implementing a new RT-qPCR assay in a laboratory.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Dengue , Humanos , Virus Chikungunya/genética , Fiebre Chikungunya/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Prospectivos , ARN Viral/genética , Dengue/diagnóstico
7.
Indian J Microbiol ; 63(1): 33-41, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37188232

RESUMEN

Regulatory small RNAs (sRNA) are RNA transcripts that are not translated into proteins but act as functional RNAs. Pathogenic Leptospira cause an epidemic spirochaetal zoonosis, Leptospirosis. It is speculated that Leptospiral sRNAs are involved in orchestrating their pathogenicity. In this study, biocomputational approach was adopted to identify Leptospiral sRNAs. In this study, two sRNA prediction programs, i.e., RNAz and nocoRNAc, were employed to screen the reference genome of Leptospira interrogans serovar Lai. Out of 126 predicted sRNAs, there are 96 cis-antisense sRNAs, 28 trans-encoded sRNAs and 2 sRNAs that partially overlap with protein-coding genes in a sense orientation. To determine whether these candidates are expressed in the pathogen, they were compared with the coverage files generated from our RNA-seq datasets. It was found out that 7 predicted sRNAs are expressed in mid-log phase, stationary phase, serum stress, temperature stress and iron stress while 2 sRNAs are expressed in mid-log phase, stationary phase, serum stress, and temperature stress. Besides, their expressions were also confirmed experimentally via RT-PCR. These experimentally validated candidates were also subjected to mRNA target prediction using TargetRNA2. Taken together, our study demonstrated that biocomputational strategy can serve as an alternative or as a complementary strategy to the laborious and expensive deep sequencing methods not only to uncover putative sRNAs but also to predict their targets in bacteria. In fact, this is the first study that integrates computational approach to predict putative sRNAs in L. interrogans serovar Lai. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01050-9.

8.
Biology (Basel) ; 12(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37237536

RESUMEN

Dengue infection, caused by the dengue virus, is a global threat which requires immediate attention and appropriate disease management. The current diagnosis of dengue infection is largely based on viral isolation, RT-PCR and serology-based detection, which are time-consuming and expensive, and require trained personnel. For early diagnosis of dengue, the direct detection of a dengue antigenic target is efficacious, and one such target is NS1. NS1-based detection is primarily antibody-centric and is beset by drawbacks pertaining to antibodies such as the high cost of synthesis and large batch-to-batch variation. Aptamers are potential surrogates of antibodies and are much cheaper, without exhibiting batch-to-batch variation. Given these advantages, we sought to isolate RNA aptamers against the NS1 protein of dengue virus serotype 2. A total of 11 cycles of SELEX were carried out, resulting in two potent aptamers, DENV-3 and DENV-6, with dissociation constant values estimated at 37.57 ± 10.34 nM and 41.40 ± 9.29 nM, respectively. These aptamers can be further miniaturized to TDENV-3 and TDENV-6a with an increased LOD upon their usage in direct ELASA. Moreover, these truncated aptamers are highly specific against the dengue NS1 while showing no cross-reactivity against the NS1 of the Zika virus, the E2 protein of the Chikungunya virus or the LipL32 protein of Leptospira, with target selectivity retained even in human serum. The usage of TDENV-3 as the capturing probe and TDENV-6a as the detection probe underpinned the development of an aptamer-based sandwich ELASA for the detection of dengue NS1. The sensitivity of the sandwich ELASA was further improved with the stabilization of the truncated aptamers and the repeated incubation strategy, which enabled a LOD of 2 nM when used with the target NS1 spiked in human serum diluted at 1:2000.

9.
World J Hepatol ; 15(3): 393-409, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37034237

RESUMEN

BACKGROUND: The demand for the development of cancer nanomedicine has increased due to its great therapeutic value that can overcome the limitations of conventional cancer therapy. However, the presence of various bioactive compounds in crude plant extracts used for the synthesis of silver nanoparticles (AgNPs) makes its precise mechanisms of action unclear. AIM: To assessed the mRNA transcriptome profiling of human HepG2 cells exposed to Catharanthus roseus G. Don (C. roseus)-AgNPs. METHODS: The proliferative activity of hepatocellular carcinoma (HepG2) and normal human liver (THLE3) cells treated with C. roseusAgNPs were measured using MTT assay. The RNA samples were extracted and sequenced using BGIseq500 platform. This is followed by data filtering, mapping, gene expression analysis, differentially expression genes analysis, Gene Ontology analysis, and pathway analysis. RESULTS: The mean IC50 values of C. roseusAgNPs on HepG2 was 4.38 ± 1.59 µg/mL while on THLE3 cells was 800 ± 1.55 µg/mL. Transcriptome profiling revealed an alteration of 296 genes. C. roseusAgNPs induced the expression of stress-associated genes such as MT, HSP and HMOX-1. Cellular signalling pathways were potentially activated through MAPK, TNF and TGF pathways that are responsible for apoptosis and cell cycle arrest. The alteration of ARF6, EHD2, FGFR3, RhoA, EEA1, VPS28, VPS25, and TSG101 indicated the uptake of C. roseus-AgNPs via both clathrin-dependent and clathrin-independent endocytosis. CONCLUSION: This study provides new insights into gene expression study of biosynthesised AgNPs on cancer cells. The cytotoxicity effect is mediated by the aberrant gene alteration, and more interestingly the unique selective antiproliferative properties indicate the C. roseusAgNPs as an ideal anticancer candidate.

10.
Biotechnol J ; 18(4): e2200092, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36735817

RESUMEN

Aptamers are a class of single-stranded (ss) nucleic acid molecules generated through Systematic Evolution of Ligands by Exponential Enrichment (SELEX) that involves iterations of time-consuming and tedious selection, amplification, and enrichment steps. To compensate for the drawbacks of conventional SELEX, we have devised an in-silico methodology that facilitates a cost-effective and facile manner of aptamer selection. Here, we report the isolation of DNA aptamers against androgen receptors (ARs) using androgen response elements (ARE) that possess natural affinity toward AR. A virtual library of ARE sequences was prepared and subjected to a stringent selection criterion to generate a sequence pool having stable hairpin conformations and high GC content. The 3D-structures of the selected ss AREs were modeled and screened through rigid docking and molecular dynamic (MD) simulation to examine their potency as potential AR binders. The predicted sequences were further validated using direct enzyme-linked aptasorbent assay (ELASA), which includes the measurement of their binding affinity, specificity, and target discrimination properties under complex biological enviroments. A short, 15 nucleotides (nts), ssDNA aptamer, termed ARapt1 with the estimated Kd value of 5.5 ± 3 nm, was chosen as the most prominent aptamer against AR based on the coherence of both the in-silico and in-vitro evaluation results. The high target-binding affinity and selectivity of ARapt1 signify its potential use as a versatile tool in diagnostic applications relevant to prostate cancer and related diseases.


Asunto(s)
Aptámeros de Nucleótidos , Masculino , Humanos , Receptores Androgénicos/genética , Simulación de Dinámica Molecular , Técnica SELEX de Producción de Aptámeros/métodos , ADN de Cadena Simple , Ligandos , Simulación del Acoplamiento Molecular
11.
Bioorg Med Chem ; 81: 117186, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36812779

RESUMEN

Leptospirosis is a potentially life-threatening zoonosis caused by pathogenic Leptospira. The major hurdle of the diagnosis of Leptospirosis lies in the issues associated with current methods of detection, which are time-consuming, tedious and the need for sophisticated, special equipments. Restrategizing the diagnostics of Leptospirosis may involve considerations of the direct detection of the outer membrane protein, which can be faster, cost-saving and require fewer equipments. One such promising marker is LipL32, which is an antigen with high amino acid sequence conservation among all the pathogenic strains. In this study, we endeavored to isolate an aptamer against LipL32 protein via a modified SELEX strategy known as tripartite-hybrid SELEX, based on 3 different partitioning strategies. In this study, we also demonstrated the deconvolution of the candidate aptamers by using in-house Python-aided unbiased data sorting in examining multiple parameters to isolate potent aptamers. We have successfully generated an RNA aptamer against LipL32 of Leptospira, LepRapt-11, which is applicable in a simple direct ELASA for the detection of LipL32. LepRapt-11 can be a promising molecular recognition element for the diagnosis of leptospirosis by targeting LipL32.


Asunto(s)
Aptámeros de Nucleótidos , Boidae , Leptospira , Leptospirosis , Animales , Humanos , Leptospira/genética , Boidae/metabolismo , Lipoproteínas/genética , Leptospirosis/diagnóstico , Leptospirosis/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo
12.
Analyst ; 148(4): 787-798, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36688616

RESUMEN

Aptamers are single-stranded oligonucleotide molecules that bind with high affinity and specificity to a wide range of target molecules. The method of systematic evolution of ligands by exponential enrichment (SELEX) plays an essential role in the isolation of aptamers from a randomized oligonucleotide library. To date, significant modifications and improvements of the SELEX process have been achieved, engendering various forms of SELEX from conventional SELEX to microfluidics-based full-chip SELEX. While full-chip SELEX is generally considered advantageous over conventional SELEX, there has not yet been a conclusive comparison between the methods. Herein, we present a comparative study of three SELEX strategies for aptamer isolation, including those using conventional agarose bead-based partitioning, microfluidic affinity selection, and fully integrated microfluidic affinity selection and PCR amplification. Using immunoglobulin E (IgE) as a model target molecule, we compare these strategies in terms of the time and cost for each step of the SELEX process including affinity selection, amplification, and oligonucleotide conditioning. Target-binding oligonucleotides in the enriched pools are sequenced and compared to assess the relative efficacy of the SELEX strategies. We show that the microfluidic strategies are more time- and cost-efficient than conventional SELEX.


Asunto(s)
Aptámeros de Nucleótidos , Microfluídica , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/química , Secuencia de Bases , Ligandos , Microfluídica/métodos , Reacción en Cadena de la Polimerasa , Técnica SELEX de Producción de Aptámeros/métodos
13.
Biotechnol J ; 18(3): e2200418, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36426669

RESUMEN

Leptospirosis is a potentially life-threatening zoonosis caused by pathogenic Leptospira and for rapid diagnostics, direct detection is desirable. LipL32 protein is the most suitable biomarker for direct detection. DNA aptamers are sought to be generated against LipL32 by Systemic Evolution of Ligands via Exponential Enrichment (SELEX). LepDapt-5a is the most potent aptamer candidate among all the candidates, as determined by direct Enzyme-linked Aptasorbent Assay (ELASA). LepDapt-5a was predicted to form a G-quadruplex structure as predicted by QGRS Mapper and validated experimentally by direct ELASA. The diagnostic potential of the aptamer was further tested on a direct and sandwich ELASA platform. A LOD of 106 mL-1 and 105 mL-1 were estimated by direct and sandwich ELASA platforms, respectively, which are within the range associated with leptospiremia levels. The dot blot assay developed was able to attain a LOD of 104 CFU mL-1 against pathogenic Leptospira, which is also within the leptospiremia level. This is the first-ever DNA aptamer and hybrid-heterodimeric aptamer constructed against LipL32. The diagnostic potentiality of the LepDapt-5a DNA aptamer was proven on three major diagnostic platforms, which are direct ELASA, sandwich ELASA, and aptamer-based dot assay.


Asunto(s)
Leptospirosis , Aptámeros de Nucleótidos , Leptospira/aislamiento & purificación , Leptospirosis/diagnóstico , Humanos
14.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35805995

RESUMEN

The dysregulation of microRNAs (miRNAs) has been known to play important roles in tumor development and progression. However, the understanding of the involvement of miRNAs in regulating tumor-associated macrophages (TAMs) and how these TAM-related miRNAs (TRMs) modulate cancer progression is still in its infancy. This study aims to explore the prognostic value of TRMs in breast cancer via the construction of a novel TRM signature. Potential TRMs were identified from the literature, and their prognostic value was evaluated using 1063 cases in The Cancer Genome Atlas Breast Cancer database. The TRM signature was further validated in the external Gene Expression Omnibus GSE22220 dataset. Gene sets enrichment analyses were performed to gain insight into the biological functions of this TRM signature. An eleven-TRM signature consisting of mir-21, mir-24-2, mir-125a, mir-221, mir-22, mir-501, mir-365b, mir-660, mir-146a, let-7b and mir-31 was constructed. This signature significantly differentiated the high-risk group from the low-risk in terms of overall survival (OS)/ distant-relapse free survival (DRFS) (p value < 0.001). The prognostic value of the signature was further enhanced by incorporating other independent prognostic factors in a nomogram-based prediction model, yielding the highest AUC of 0.79 (95% CI: 0.72−0.86) at 5-year OS. Enrichment analyses confirmed that the differentially expressed genes were mainly involved in immune-related pathways such as adaptive immune response, humoral immune response and Th1 and Th2 cell differentiation. This eleven-TRM signature has great potential as a prognostic factor for breast cancer patients besides unravelling the dysregulated immune pathways in high-risk breast cancer.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Biomarcadores de Tumor/genética , Neoplasias de la Mama/patología , Femenino , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Recurrencia Local de Neoplasia , Macrófagos Asociados a Tumores
15.
Biosensors (Basel) ; 12(3)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35323440

RESUMEN

Detection of genetic mutations leading to hematological malignancies is a key factor in the early diagnosis of acute myeloid leukemia (AML). FLT3-ITD mutations are an alarming gene defect found commonly in AML patients associated with high cases of leukemia and low survival rates. Available diagnostic assessments for FLT3-ITD are incapable of combining cost-effective detection platforms with high analytical performances. To circumvent this, we developed an efficient DNA biosensor for the recognition of AML caused by FLT3-ITD mutation utilizing electrochemical impedance characterization. The system was designed by adhering gold-sputtered zinc oxide (ZnO) nanorods onto interdigitated electrode (IDE) sensor chips. The sensing surface was biointerfaced with capture probes designed to hybridize with unmutated FLT3 sequences instead of the mutated FLT3-ITD gene, establishing a reverse manner of target detection. The developed biosensor demonstrated specific detection of mutated FLT3 genes, with high levels of sensitivity in response to analyte concentrations as low as 1 nM. The sensor also exhibited a stable functional life span of more than five weeks with good reproducibility and high discriminatory properties against FLT3 gene targets. Hence, the developed sensor is a promising tool for rapid and low-cost diagnostic applications relevant to the clinical prognosis of AML stemming from FLT3-ITD mutations.


Asunto(s)
Técnicas Biosensibles , Leucemia Mieloide Aguda , Nanotubos , Óxido de Zinc , ADN , Oro , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Mutación , Reproducibilidad de los Resultados , Tirosina Quinasa 3 Similar a fms/genética
16.
PLoS Negl Trop Dis ; 16(2): e0010152, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35120141

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV) causes febrile illnesses and has always been misdiagnosed as other viral infections, such as dengue and Zika; thus, a laboratory test is needed. Serological tests are commonly used to diagnose CHIKV infection, but their accuracy is questionable due to varying degrees of reported sensitivities and specificities. Herein, we conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy of serological tests currently available for CHIKV. METHODOLOGY AND PRINCIPAL FINDINGS: A literature search was performed in PubMed, CINAHL Complete, and Scopus databases from the 1st December 2020 until 22nd April 2021. Studies reporting sensitivity and specificity of serological tests against CHIKV that used whole blood, serum, or plasma were included. QUADAS-2 tool was used to assess the risk of bias and applicability, while R software was used for statistical analyses. Thirty-five studies were included in this meta-analysis; 72 index test data were extracted and analysed. Rapid and ELISA-based antigen tests had a pooled sensitivity of 85.8% and 82.2%, respectively, and a pooled specificity of 96.1% and 96.0%, respectively. According to our meta-analysis, antigen detection tests serve as a good diagnostic test for acute-phase samples. The IgM detection tests had more than 90% diagnostic accuracy for ELISA-based tests, immunofluorescence assays, in-house developed tests, and samples collected after seven days of symptom onset. Conversely, low sensitivity was found for the IgM rapid test (42.3%), commercial test (78.6%), and for samples collected less than seven of symptom onset (26.2%). Although IgM antibodies start to develop on day 2 of CHIKV infection, our meta-analysis revealed that the IgM detection test is not recommended for acute-phase samples. The diagnostic performance of the IgG detection tests was more than 93% regardless of the test formats and whether the test was commercially available or developed in-house. The use of samples collected after seven days of symptom onset for the IgG detection test suggests that IgG antibodies can be detected in the convalescent-phase samples. Additionally, we evaluated commercial IgM and IgG tests for CHIKV and found that ELISA-based and IFA commercial tests manufactured by Euroimmun (Lübeck, Germany), Abcam (Cambridge, UK), and Inbios (Seattle, WA) had diagnostic accuracy of above 90%, which was similar to the manufacturers' claim. CONCLUSION: Based on our meta-analysis, antigen or antibody-based serological tests can be used to diagnose CHIKV reliably, depending on the time of sample collection. The antigen detection tests serve as a good diagnostic test for samples collected during the acute phase (≤7 days post symptom onset) of CHIKV infection. Likewise, IgM and IgG detection tests can be used for samples collected in the convalescent phase (>7 days post symptom onset). In correlation to the clinical presentation of the patients, the combination of the IgM and IgG tests can differentiate recent and past infections.


Asunto(s)
Antígenos Virales/aislamiento & purificación , Fiebre Chikungunya/diagnóstico , Pruebas Serológicas/normas , Antígenos Virales/sangre , Virus Chikungunya/inmunología , Virus Chikungunya/aislamiento & purificación , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Sensibilidad y Especificidad
17.
Ecotoxicol Environ Saf ; 232: 113249, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104779

RESUMEN

Purification and detection of algal toxins is the most effective technique to ensure that people have clean and safe drinking water. To achieve these objectives, various state-of-the-art technologies were designed and fabricated to decontaminate and detect algal toxins in aquatic environments. Amongst these technologies, aptamer-functionalized hybrid nanomaterials conjugates have received significant consideration as a result of their several benefits over other methods, such as good controllable selectivity, low immunogenicity, and biocompatibility. Because of their excellent properties, aptamer-functionalized hybrid nanomaterials conjugates are one of several remarkable agents. Several isolated aptamer sequences for algal toxins are addressed in this review, as well as aptasensor and decontamination aptamer functionalized metal nanoparticle-derived hybrid nanocomposites applications. In addition, we present diverse aptamer-functionalized hybrid nanomaterial conjugates designs and their applications for sensing and decontamination.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanoestructuras , Descontaminación , Humanos , Nanoestructuras/toxicidad
18.
World J Microbiol Biotechnol ; 38(2): 31, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34989899

RESUMEN

Asymmetric PCR is one of the most utilized strategies in ssDNA generation towards DNA aptamer generation due to its low cost, robustness and the low amount of starting template. Despite its advantages, careful optimization of the asymmetric PCR is still warranted to optimize the yield of ssDNA. In this present study, we have developed an extensive optimization pipeline that involves the optimization of symmetric PCR initially followed by the optimization of asymmetric PCR. In the asymmetric PCR, optimization of primer amounts/ratios, PCR cycles, annealing temperatures, template concentrations, Mg2+/dNTP concentrations and the amounts of Taq Polymerase was carried out. To further boost the generation of ssDNA, we have also integrated an additional single-stranded DNA generation method, either via lambda exonuclease or biotin-streptavidin-based separation into the optimization pipeline to further improve the yield of ssDNA generation. We have acquired 700 ± 11.3 and 820 ± 19.2 nM for A-PCR-lambda exonuclease and A-PCR-biotin-streptavidin-based separation, respectively. We urge to develop a separate optimization pipeline of asymmetric PCR for each different randomized ssDNA library before embarking on any SELEX studies.


Asunto(s)
Aptámeros de Nucleótidos/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa/métodos , Biotina , ADN de Cadena Simple , Biblioteca de Genes , Técnica SELEX de Producción de Aptámeros/métodos , Estreptavidina
19.
Microfluid Nanofluidics ; 26(6)2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36937170

RESUMEN

Aptamers are synthetic single-stranded nucleic acid molecules that bind to biochemical targets with high affinity and specificity. The method of systematic evolution of ligands by exponential enrichment (SELEX) is widely used to isolate aptamers from randomized oligonucleotides. Recently, microfluidic technology has been applied to improve the efficiency and reduce the cost in SELEX processes. In this work, we present an approach that exploits surface acoustic waves to improve the affinity selection process in microfluidic SELEX. Acoustic streaming is used to enhance the interactions of the solution-based oligonucleotide molecules with microbead-immobilized target molecules, allowing the identification of high-affinity aptamer candidates in a more efficient manner. For demonstration, a DNA aptamer is isolated within three rounds of selection in 5 h to specifically bind to immunoglobulin E, a representative target protein, with an equilibrium dissociation constant of approximately 22.6 nM.

20.
Talanta ; 238(Pt 1): 122971, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34857318

RESUMEN

Aptamers have become coming-of-age molecular recognition elements in both diagnostic and therapeutic applications. Generated by SELEX, the 'quality control' of aptamers, which involves the validation of their binding affinity against their respective targets is pivotal to ascertain their potency prior to use in any downstream assays or applications. Several aptamers have been isolated thus far, however, the usage of inappropriate validation assays renders some of these aptamers dubitable in terms of their binding capabilities. Driven by this need, we provide an up-to-date critical review of the various strategies used to determine the aptamer-target binding affinity with the aim of providing researchers a better comprehension of the different analytical approaches in respect to the molecular properties of aptamers and their intended targets. The techniques reported have been classified as label-based techniques such as fluorescence intensity, fluorescence anisotropy, filter-binding assays, gel shift assays, ELISA; and label-free techniques such as UV-Vis spectroscopy, circular dichroism, isothermal titration calorimetry, native electrospray ionization-mass spectrometry, quartz crystal microbalance, surface plasmon resonance, NECEEM, backscattering interferometry, capillary electrophoresis, HPLC, and nanoparticle aggregation assays. Hybrid strategies combining the characteristics of both categories such as microscale thermophoresis have been also additionally emphasized. The fundamental principles, complexity, benefits, and challenges under each technique are elaborated in detail.


Asunto(s)
Aptámeros de Nucleótidos , Técnica SELEX de Producción de Aptámeros , Calorimetría , Dicroismo Circular , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA