Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Chimia (Aarau) ; 78(5): 304-312, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38822773

RESUMEN

Understanding structure-performance relationships are essential for the rational design of new functional materials or in the further optimization of (catalytic) processes. Due to the high penetration depth of the radiation used, synchrotron-based hard X-ray techniques (with energy > 4.5 keV) allow the study of materials under realistic conditions (in situ and operando) and thus play an important role in uncovering structure-performance relationships. X-ray absorption and emission spectroscopies (XAS and XES) give insight into the electronic structure (oxidation state, spin state) and local geometric structure (type and number of nearest neighbor atoms, bond distances, disorder) up to ~5 Å around the element of interest. In this mini review, we will give an overview of the in situ and operando capabilities of the SuperXAS beamline, a facility for hard X-ray spectroscopy, through recent examples from studies of heterogeneous catalysts, electrochemical systems, and photoinduced processes. The possibilities for time-resolved experiments in the time range from ns to seconds and longer are illustrated. The extension of X-ray spectroscopy at the new Debye beamline combined with operando X-ray scattering and diffraction and further developments of time-resolved XES at SuperXAS will open new possibilities after the Swiss Light Source upgrade mid 2025.

2.
NEJM Evid ; 3(5): EVIDoa2300342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38815164

RESUMEN

BACKGROUND: Detection and containment of hospital outbreaks currently depend on variable and personnel-intensive surveillance methods. Whether automated statistical surveillance for outbreaks of health care-associated pathogens allows earlier containment efforts that would reduce the size of outbreaks is unknown. METHODS: We conducted a cluster-randomized trial in 82 community hospitals within a larger health care system. All hospitals followed an outbreak response protocol when outbreaks were detected by their infection prevention programs. Half of the hospitals additionally used statistical surveillance of microbiology data, which alerted infection prevention programs to outbreaks. Statistical surveillance was also applied to microbiology data from control hospitals without alerting their infection prevention programs. The primary outcome was the number of additional cases occurring after outbreak detection. Analyses assessed differences between the intervention period (July 2019 to January 2022) versus baseline period (February 2017 to January 2019) between randomized groups. A post hoc analysis separately assessed pre-coronavirus disease 2019 (Covid-19) and Covid-19 pandemic intervention periods. RESULTS: Real-time alerts did not significantly reduce the number of additional outbreak cases (intervention period versus baseline: statistical surveillance relative rate [RR]=1.41, control RR=1.81; difference-in-differences, 0.78; 95% confidence interval [CI], 0.40 to 1.52; P=0.46). Comparing only the prepandemic intervention with baseline periods, the statistical outbreak surveillance group was associated with a 64.1% reduction in additional cases (statistical surveillance RR=0.78, control RR=2.19; difference-in-differences, 0.36; 95% CI, 0.13 to 0.99). There was no similarly observed association between the pandemic versus baseline periods (statistical surveillance RR=1.56, control RR=1.66; difference-in-differences, 0.94; 95% CI, 0.46 to 1.92). CONCLUSIONS: Automated detection of hospital outbreaks using statistical surveillance did not reduce overall outbreak size in the context of an ongoing pandemic. (Funded by the Centers for Disease Control and Prevention; ClinicalTrials.gov number, NCT04053075. Support for HCA Healthcare's participation in the study was provided in kind by HCA.).


Asunto(s)
COVID-19 , Infección Hospitalaria , Brotes de Enfermedades , Humanos , Brotes de Enfermedades/prevención & control , COVID-19/epidemiología , COVID-19/prevención & control , Infección Hospitalaria/epidemiología , Infección Hospitalaria/prevención & control , Control de Infecciones/métodos , SARS-CoV-2 , Hospitales Comunitarios
3.
EES Catal ; 2(1): 335-350, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38222064

RESUMEN

Co-based perovskite oxides are intensively studied as promising catalysts for electrochemical water splitting in an alkaline environment. However, the increasing Co demand by the battery industry is pushing the search for Co-free alternatives. Here we report a systematic study of the Co-free layered perovskite family RBaCuFeO5+δ (R = 4f lanthanide), where we uncover the existence of clear correlations between electrochemical properties and several physicochemical descriptors. Using a combination of advanced neutron and X-ray synchrotron techniques with ab initio DFT calculations we demonstrate and rationalize the positive impact of a large R ionic radius in their oxygen evolution reaction (OER) activity. We also reveal that, in these materials, Fe3+ is the transition metal cation the most prone to donate electrons. We also show that similar R3+/Ba2+ ionic radii favor the incorporation and mobility of oxygen in the layered perovskite structure and increase the number of available O diffusion paths, which have an additional, positive impact on both, the electric conductivity and the OER process. An unexpected result is the observation of a clear surface reconstruction exclusively in oxygen-rich samples (δ > 0), a fact that could be related to their superior OER activity. The encouraging intrinsic OER values obtained for the most active electrocatalyst (LaBaCuFeO5.49), together with the possibility of industrially producing this material in nanocrystalline form should inspire the design of other Co-free oxide catalysts with optimal properties for electrochemical water splitting.

4.
Small Methods ; : e2301397, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38295064

RESUMEN

Infrared spectroscopy (IR) is a widely used technique enabling to identify specific functional groups in the molecule of interest based on their characteristic vibrational modes or the presence of a specific adsorption site based on the characteristic vibrational mode of an adsorbed probe molecule. The interpretation of an IR spectrum is generally carried out within a fingerprint paradigm by comparing the observed spectral features with the features of known references or theoretical calculations. This work demonstrates a method for extracting quantitative structural information beyond this approach by application of machine learning (ML) algorithms. Taking palladium hydride formation as an example, Pd-H pressure-composition isotherms are reconstructed using IR data collected in situ in diffuse reflectance using CO molecule as a probe. To the best of the knowledge, this is the first example of the determination of continuous structural descriptors (such as interatomic distance and stoichiometric coefficient) from the fine structure of vibrational spectra, which opens new possibilities of using IR spectra for structural analysis.

5.
Clin Infect Dis ; 77(Suppl 7): S507-S518, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38118007

RESUMEN

Antimicrobial resistance (AMR) is a multifaceted global health problem disproportionately affecting low- and middle-income countries (LMICs). The Capturing data on Antimicrobial resistance Patterns and Trends in Use in Regions of Asia (CAPTURA) project was tasked to expand the volume of AMR and antimicrobial use data in Asia. The CAPTURA project used 2 data-collection streams: facility data and project metadata. Project metadata constituted information collected to map out data sources and assess data quality, while facility data referred to the retrospective data collected from healthcare facilities. A down-selection process, labelled "the funnel approach" by the project, was adopted to use the project metadata in prioritizing and selecting laboratories for retrospective AMR data collection. Moreover, the metadata served as a guide for understanding the AMR data once they were collected. The findings from CAPTURA's metadata add to the current discourse on the limitation of AMR data in LMICs. There is generally a low volume of AMR data generated as there is a lack of microbiology laboratories with sufficient antimicrobial susceptibility testing capacity. Many laboratories in Asia are still capturing data on paper, resulting in scattered or unused data not readily accessible or shareable for analyses. There is also a lack of clinical and epidemiological data captured, impeding interpretation and in-depth understanding of the AMR data. CAPTURA's experience in Asia suggests that there is a wide spectrum of capacity and capability of microbiology laboratories within a country and region. As local AMR surveillance is a crucial instrument to inform context-specific measures to combat AMR, it is important to understand and assess current capacity-building needs while implementing activities to enhance surveillance systems.


Asunto(s)
Antibacterianos , Países en Desarrollo , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Estudios Retrospectivos , Farmacorresistencia Bacteriana , Asia/epidemiología
6.
Clin Infect Dis ; 77(Suppl 7): S581-S587, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38118016

RESUMEN

Antimicrobial resistance (AMR) is a growing global public health challenge associated with 4.95 million deaths in 2019 and an estimated 10 million deaths per year by 2050 in the absence of coordinated action. A robust AMR surveillance system is therefore required to avert such a scenario. Based on an analysis of country-level AMR data in 8 Capturing Data on Antimicrobial Resistance Patterns and Trends in Use in Regions of Asia (CAPTURA) countries, we present a list of key recommendations to strengthen AMR surveillance. We propose 10 primary considerations under 3 broad categories, including recommendations on (1) laboratory and testing practices, (2) data management and analysis, and (3) data use.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Asia , Salud Pública , Laboratorios
7.
Clin Infect Dis ; 77(Suppl 7): S549-S559, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38118018

RESUMEN

The Institute of Epidemiology, Disease Control and Research (IEDCR) conducts active, case-based national antimicrobial resistance (AMR) surveillance in Bangladesh. The Capturing Data on Antimicrobial Resistance Patterns and Trends in Use in Regions of Asia (CAPTURA) project accessed aggregated retrospective data from non-IEDCR study sites and 9 IEDCR sites to understand the pattern and extent of AMR and to use analyzed data to guide ongoing and future national AMR surveillance in both public and private laboratories. Record-keeping practices, data completeness, quality control, and antimicrobial susceptibility test practices were investigated in all laboratories participating in case-based IEDCR surveillance and laboratory-based CAPTURA sites. All 9 IEDCR laboratories recorded detailed case-based data (n = 16 816) in electronic format for a priority subset of processed laboratory samples. In contrast, most CAPTURA sites (n = 18/33 [54.5%]) used handwritten registers to store data. The CAPTURA sites were characterized by fewer recorded variables (such as patient demographics, clinical history, and laboratory findings) with 1 020 197 individual data, less integration of patient records with the laboratory information system, and nonuniform practice of data recording; however, data were collected from all available clinical samples. The analyses conducted on AMR data collected by IEDCR and CAPTURA in Bangladesh provide current data collection status and highlight opportunities to improve ongoing data collection to strengthen current AMR surveillance system initiatives. We recommend a tailored approach to conduct AMR surveillance in high-burden, resource-limited settings.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bangladesh/epidemiología , Estudios Retrospectivos , Laboratorios
8.
Nat Commun ; 14(1): 8333, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097556

RESUMEN

Cytoglobin is a heme protein with unresolved physiological function. Genetic deletion of zebrafish cytoglobin (cygb2) causes developmental defects in left-right cardiac determination, which in humans is associated with defects in ciliary function and low airway epithelial nitric oxide production. Here we show that Cygb2 co-localizes with cilia and with the nitric oxide synthase Nos2b in the zebrafish Kupffer's vesicle, and that cilia structure and function are disrupted in cygb2 mutants. Abnormal ciliary function and organ laterality defects are phenocopied by depletion of nos2b and of gucy1a, the soluble guanylate cyclase homolog in fish. The defects are rescued by exposing cygb2 mutant embryos to a nitric oxide donor or a soluble guanylate cyclase stimulator, or with over-expression of nos2b. Cytoglobin knockout mice also show impaired airway epithelial cilia structure and reduced nitric oxide levels. Altogether, our data suggest that cytoglobin is a positive regulator of a signaling axis composed of nitric oxide synthase-soluble guanylate cyclase-cyclic GMP that is necessary for normal cilia motility and left-right patterning.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Humanos , Ratones , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Citoglobina/genética , Tipificación del Cuerpo/genética , Óxido Nítrico/metabolismo , Guanilil Ciclasa Soluble/genética , Guanilil Ciclasa Soluble/metabolismo , Cilios/metabolismo , Óxido Nítrico Sintasa/metabolismo
9.
Nat Commun ; 14(1): 5557, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689779

RESUMEN

Carbon supports are ubiquitous components of heterogeneous catalysts for acetylene hydrochlorination to vinyl chloride, from commercial mercury-based systems to more sustainable metal single-atom alternatives. Their potential co-catalytic role has long been postulated but never unequivocally demonstrated. Herein, we evidence the bifunctionality of carbons and metal sites in the acetylene hydrochlorination catalytic cycle. Combining operando X-ray absorption spectroscopy with other spectroscopic and kinetic analyses, we monitor the structure of single metal atoms (Pt, Au, Ru) and carbon supports (activated, non-activated, and nitrogen-doped) from catalyst synthesis, using various procedures, to operation at different conditions. Metal atoms exclusively activate hydrogen chloride, while metal-neighboring sites in the support bind acetylene. Resolving the coordination environment of working metal atoms guides theoretical simulations in proposing potential binding sites for acetylene in the support and a viable reaction profile. Expanding from single-atom to ensemble catalysis, these results reinforce the importance of optimizing both metal and support components to leverage the distinct functions of each for advancing catalyst design.

10.
Small ; 19(52): e2305771, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37635107

RESUMEN

Zirconium-containing metal-organic framework (MOF) with UiO-66 topology is an extremely versatile material, which finds applications beyond gas separation and catalysis. However, after more than 10 years after the first reports introducing this MOF, understanding of the molecular-level mechanism of its nucleation and growth is still lacking. By means of in situ time-resolved high-resolution mass spectrometry, Zr K-edge X-ray absorption spectroscopy, magic-angle spinning nuclear magnetic resonance spectroscopy, and X-ray diffraction it is showed that the nucleation of UiO-66 occurs via a solution-mediated hydrolysis of zirconium chloroterephthalates, whose formation appears to be autocatalytic. Zirconium-oxo nodes form directly and rapidly during the synthesis, the formation of pre-formed clusters and stable non-stoichiometric intermediates are not observed. The nuclei of UiO-66 possess identical to the crystals local environment, however, they lack long-range order, which is gained during the crystallization. Crystal growth is the rate-determining step, while fast nucleation controls the formation of the small crystals of UiO-66 with a narrow size distribution of about 200 nanometers.

11.
JACS Au ; 3(7): 1939-1951, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37502165

RESUMEN

Propane dehydrogenation is an important industrial reaction to access propene, the world's second most used polymer precursor. Catalysts for this transformation are required to be long living at high temperature and robust toward harsh oxidative regeneration conditions. In this work, combining surface organometallic chemistry and thermolytic molecular precursor approach, we prepared well-defined silica-supported Pt and alloyed PtZn materials to investigate the effect of Ti-doping on catalytic performances. Chemisorption experiments and density functional calculations reveal a significant change in the electronic structure of the nanoparticles (NPs) due to the Ti-doping. Evaluation of the resulting materials PtZn/SiO2 and PtZnTi/SiO2 during long deactivation phases reveal a stabilizing effect of Ti in PtZnTi/SiO2 with a kd of 0.015 h-1 compared to PtZn/SiO2 with a kd of 0.022 h-1 over 108 h on stream. Such a stabilizing effect is also present during a second deactivation phase after applying a regeneration protocol to the materials under O2 and H2 at high temperatures. A combined scanning transmission electron microscopy, in situ X-ray absorption spectroscopy, electron paramagnetic resonance, and density functional theory study reveals that this effect is related to a sintering prevention of the alloyed PtZn NPs in PtZnTi/SiO2 due to a strong interaction of the NPs with Ti sites. However, in contrast to classical strong metal-support interaction, we show that the coverage of the Pt NPs with TiOx species is not needed to explain the changes in adsorption and reactivity properties. Indeed, the interaction of the Pt NPs with TiIII sites is enough to decrease CO adsorption and to induce a red-shift of the CO band because of electron transfer from the TiIII sites to Pt0.

13.
Foods ; 12(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37444260

RESUMEN

Food fortification is an effective approach to improve vitamin D (VD) concentrations in foods. Eggs are a useful food vehicle for enrichment with VD via its hydroxylated metabolite, 25-hydroxyvitamin D (25-D3), in hen feed. This study determined the impact of time of lay, storage conditions (ambient and refrigeration) and common cooking methods (boiling, frying, scrambling, poaching and microwaving) on the vitamin D metabolite concentration of eggs enriched with 25-D3. Processed samples were freeze-dried and analysed for D3 and 25-D3 using an HPLC-MS(/MS) method. The results indicated that storage and cooking practices influence VD metabolites, with 25-D3 showing true retention of 72-111% and concentrations of 0.67-0.96 µg/100 g of whole egg. Vitamin D3 showed true retention of 50-152% and concentrations of 0.11-0.61 µg/100 g of whole egg. Depending on the storage and method of cooking applied, the calculated total VD activity of enriched eggs ranged from 3.45 to 5.43 µg/100 g of whole egg and was 22-132% higher in comparison to standardised VD content for non-enriched British eggs. The study suggests that 25-D3 is a stable metabolite in eggs following storage and cooking, and that 25-D3-enriched eggs may serve as a potent dietary source of VD.

14.
Nat Commun ; 14(1): 3507, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316479

RESUMEN

Temperature and biodiversity changes occur in concert, but their joint effects on ecological stability of natural food webs are unknown. Here, we assess these relationships in 19 planktonic food webs. We estimate stability as structural stability (using the volume contraction rate) and temporal stability (using the temporal variation of species abundances). Warmer temperatures were associated with lower structural and temporal stability, while biodiversity had no consistent effects on either stability property. While species richness was associated with lower structural stability and higher temporal stability, Simpson diversity was associated with higher temporal stability. The responses of structural stability were linked to disproportionate contributions from two trophic groups (predators and consumers), while the responses of temporal stability were linked both to synchrony of all species within the food web and distinctive contributions from three trophic groups (predators, consumers, and producers). Our results suggest that, in natural ecosystems, warmer temperatures can erode ecosystem stability, while biodiversity changes may not have consistent effects.


Asunto(s)
Ecosistema , Cadena Alimentaria , Temperatura , Biodiversidad , Estado Nutricional
15.
Nat Commun ; 14(1): 2607, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147282

RESUMEN

Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs - designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [-4.1, -0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones.


Asunto(s)
Biodiversidad , Ecosistema , Plantas , Causalidad , Biomasa
16.
Angew Chem Int Ed Engl ; 62(27): e202301468, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37139920

RESUMEN

Platinum nanoparticles (NPs) supported by titania exhibit a strong metal-support interaction (SMSI)[1] that can induce overlayer formation and encapsulation of the NP's with a thin layer of support material. This encapsulation modifies the catalyst's properties, such as increasing its chemoselectivity[2] and stabilizing it against sintering.[3] Encapsulation is typically induced during high-temperature reductive activation and can be reversed through oxidative treatments.[1] However, recent findings indicate that the overlayer can be stable in oxygen.[4, 5] Using in situ transmission electron microscopy, we investigated how the overlayer changes with varying conditions. We found that exposure to oxygen below 400 °C caused disorder and removal of the overlayer upon subsequent hydrogen treatment. In contrast, elevating the temperature to 900 °C while maintaining the oxygen atmosphere preserved the overlayer, preventing platinum evaporation when exposed to oxygen. Our findings demonstrate how different treatments can influence the stability of nanoparticles with or without titania overlayers. expanding the concept of SMSI and enabling noble metal catalysts to operate in harsh environments without evaporation associated losses during burn-off cycling.

17.
Angew Chem Int Ed Engl ; 62(18): e202301297, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36855938

RESUMEN

Supported vanadia (VOx ) is a versatile catalyst for various redox processes where ceria-supported VOx have shown to be particularly active in the oxidative dehydrogenation (ODH) of alcohols. In this work, we clarify the origin of the volcano-shaped ethanol ODH activity trend for VOx /CeOx catalysts using operando quick V K- and Ce L3 - edge XAS experiments performed under transient conditions. We quantitatively demonstrate that both vanadium and cerium are synergistically involved in alcohol ODH. The concentration of reversible Ce4+ /Ce3+ species was identified as the main descriptor of the alcohol ODH activity. The activity drop in the volcano plot, observed at above ca. 3 V nm-2 surface loading (ca. 30 % of VOx monolayer coverage), is related to the formation of spectator V4+ and Ce3+ species, which were identified here for the first time. These results might prove to be helpful for the rational optimization of VOx /CeO2 catalysts and the refinement of the theoretical models.

18.
Ecol Evol ; 13(3): e9860, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36911314

RESUMEN

Intraspecific variability (IV) has been proposed to explain species coexistence in diverse communities. Assuming, sometimes implicitly, that conspecific individuals can perform differently in the same environment and that IV increases niche overlap, previous studies have found contrasting results regarding the effect of IV on species coexistence. We aim at showing that the large IV observed in data does not mean that conspecific individuals are necessarily different in their response to the environment and that the role of high-dimensional environmental variation in determining IV has largely remained unexplored in forest plant communities. We first used a simulation experiment where an individual attribute is derived from a high-dimensional model, representing "perfect knowledge" of individual response to the environment, to illustrate how large observed IV can result from "imperfect knowledge" of the environment. Second, using growth data from clonal Eucalyptus plantations in Brazil, we estimated a major contribution of the environment in determining individual growth. Third, using tree growth data from long-term tropical forest inventories in French Guiana, Panama and India, we showed that tree growth in tropical forests is structured spatially and that despite a large observed IV at the population level, conspecific individuals perform more similarly locally than compared with heterospecific individuals. As the number of environmental dimensions that are well quantified at fine scale is generally lower than the actual number of dimensions influencing individual attributes, a great part of observed IV might be represented as random variation across individuals when in fact it is environmentally driven. This mis-representation has important consequences for inference about community dynamics. We emphasize that observed IV does not necessarily impact species coexistence per se but can reveal species response to high-dimensional environment, which is consistent with niche theory and the observation of the many differences between species in nature.

19.
Adv Mater ; 35(26): e2211464, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36964929

RESUMEN

Copper catalysts are attractive candidates for Hg-free vinyl chloride monomer (VCM) production via acetylene hydrochlorination due to their non-toxic nature and high stability. However, the optimal architecture for Cu-based catalysts at the nanoscale is not yet fully understood. To address this gap, the metal precursor and the annealing temperature are modified to prepare copper nanoparticles or single atoms, either in chlorinated or ligand-free form, on an unmodified carbon support. Evaluation in the reaction reveals a remarkable convergence of the performance of all materials to the stable VCM productivity of the single-atom catalyst. In-depth characterization by advanced microscopy, quasi in situ and operando spectroscopy, and simulations uncover a reaction-induced formation of low-valent, single atom Cu(I)Cl site motif, regardless of the initial nanostructure. Various surface oxygen groups promote nanoparticle redispersion by stabilizing single-atom CuClx species. The anchoring site structure does not strongly influence the acetylene adsorption energy or the crucial role they play in stabilizing key reaction intermediates. A life-cycle assessment demonstrates the potential environmental benefits of copper catalysts over state-of-the-art alternatives. This work contributes to a better understanding of optimal metal speciation and highlights the sustainability of Cu-based catalysts for VCM production.

20.
Adv Mater ; 35(14): e2211512, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36774196

RESUMEN

Decentralized electrochemical production of hydrogen peroxide (H2 O2 ) is an attractive alternative to the industrial anthraquinone process, the application of which is hindered by the lack of high-performance electrocatalysts in acidic media. Herein, a novel catalyst design strategy is reported to optimize the Pd sites in pure metallic aerogels by tuning their geometric environments and electronic structures. By increasing the Hg content in the Pd-Hg aerogels, the PdPd coordination is gradually diminished, resulting in isolated, single-atom-like Pd motifs in the Pd2 Hg5 aerogel. Further heterometal doping leads to a series of M-Pd2 Hg5 aerogels with an unalterable geometric environment, allowing for sole investigation of the electronic effects. Combining theoretical and experimental analyses, a volcano relationship is obtained for the M-Pd2 Hg5 aerogels, demonstrating an effective tunability of the electronic structure of the Pd active sites. The optimized Au-Pd2 Hg5 aerogel exhibits an outstanding H2 O2 selectivity of 92.8% as well as transferred electron numbers of ≈2.1 in the potential range of 0.0-0.4 VRHE . This work opens a door for designing metallic aerogel electrocatalysts for H2 O2 production and highlights the importance of electronic effects in tuning electrocatalytic performances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...