Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolites ; 12(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557291

RESUMEN

Microbial metabolites affect the neuron system and muscle cell functions. Amyotrophic lateral sclerosis (ALS) is a multifactorial neuromuscular disease. Our previous study has demonstrated elevated intestinal inflammation and dysfunction of the microbiome in patients with ALS and an ALS mouse model (human-SOD1G93A transgenic mice). However, the metabolites in ALS progression are unknown. Using an unbiased global metabolomic measurement and targeted measurement, we investigated the longitudinal changes of fecal metabolites in SOD1G93A mice over the course of 13 weeks. We further compared the changes of metabolites and inflammatory response in age-matched wild-type (WT) and SOD1G93A mice treated with the bacterial product butyrate. We found changes in carbohydrate levels, amino acid metabolism, and the formation of gamma-glutamyl amino acids. Shifts in several microbially contributed catabolites of aromatic amino acids agree with butyrate-induced changes in the composition of the gut microbiome. Declines in gamma-glutamyl amino acids in feces may stem from differential expression of gamma-glutamyltransferase (GGT) in response to butyrate administration. Due to the signaling nature of amino acid-derived metabolites, these changes indicate changes in inflammation, e.g., histamine, and contribute to differences in systemic levels of neurotransmitters, e.g., γ-Aminobutyric acid (GABA) and glutamate. Butyrate treatment was able to restore some of the healthy metabolites in ALS mice. Moreover, microglia in the spinal cord were measured by IBA1 staining. Butyrate treatment significantly suppressed the IBA1 level in the SOD1G93A mice. Serum IL-17 and LPS were significantly reduced in the butyrate-treated SOD1G93A mice. We have demonstrated an inter-organ communications link among microbial metabolites, neuroactive metabolites from the gut, and inflammation in ALS progression. The study supports the potential to use metabolites as ALS hallmarks and for treatment.

2.
PLoS One ; 15(8): e0237182, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32764797

RESUMEN

Necrotizing enterocolitis is the most common gastrointestinal disorder in premature neonates. This disease is characterized by massive epithelial necrosis, gut barrier dysfunction and improper mucosal defense development. Studies have shown that probiotic administration can decrease NEC incidence and mortality. The proposed mechanisms of probiotics for the prevention of NEC are: promotion of intestinal development; improved barrier function through decreased apoptosis and improved mucin production; decreased expression of proinflammatory cytokines IL6, IL8, and TNFα, and modulation of microbiota dysbiosis in preterm infants. However, reported sepsis in the immunocompromised preterm host has deterred routine prophylactic administration of probiotics in the neonatal intensive care unit. We hypothesize that maternal administration of probiotics to pregnant mouse dams can recapitulate the beneficial effects observed in neonates fed with probiotics directly. We exposed pregnant mice to the probiotics and monitored the changes in the developing intestines of the offspring. Pregnant mice were fed daily with the probiotics Lactobacillus acidophilus and Bifidobacterium infantis (LB) from embryonic day15 to 2-week-old postnatally. Intraperitoneal administration of IL-1ß in the pups was used to model proinflammatory insults. Sera were collected at 2 weeks of age and evaluated for inflammatory cytokines by enzyme-linked-immunosorbent-assay and gut permeability by Fluorescein isothiocyanate-dextran tracer assay. Ileal tissues were collected for the evaluation of apoptosis and proliferation of the intestinal epithelium; as well as mucin and tight junction integrity at mucosal surface by immunofluorescent staining. We find that maternal LB exposure facilitated intestinal epithelial cell differentiation, prevented loss of mucin and preserved the intestinal integrity and barrier function and decreased serum levels of IL-1ß, TNF-α and IL-6 in the preweaned offsprings. in LB exposed pups. We demonstrate that maternal probiotic supplementation promotes gut maturation in developing offspring. This is potentially a safe alternative therapy to induce intestinal maturation and prevent prematurity-associated neonatal disorders.


Asunto(s)
Enterocolitis Necrotizante/prevención & control , Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/crecimiento & desarrollo , Exposición Materna , Probióticos/administración & dosificación , Animales , Animales Recién Nacidos/crecimiento & desarrollo , Animales Recién Nacidos/microbiología , Bifidobacterium longum subspecies infantis , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Enterocolitis Necrotizante/inmunología , Enterocolitis Necrotizante/microbiología , Enterocolitis Necrotizante/patología , Heces/microbiología , Femenino , Interacciones Microbiota-Huesped/fisiología , Humanos , Recién Nacido , Recien Nacido Prematuro , Interleucina-1beta/administración & dosificación , Interleucina-1beta/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Lactobacillus acidophilus , Ratones
3.
Prog Mol Biol Transl Sci ; 171: 1-13, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32475519

RESUMEN

Neurodevelopmental impairment remains a significant morbidity in former very low birth weight premature infants. There is increasing evidence the microbiome affects neurodevelopment but mechanistic causes are largely unknown. There are many factors which affect the developing microbiome in infants including mode of delivery, feeding, medications, and environmental exposures. The overall impact of these factors may differ between premature and term infants. The microbiome and brain have well recognized bidirectional communication pathways via neural, hormonal, and immunologic mechanisms. Understanding the interplay between these different pathways has been possible with the use of animal models, particularly germ-free mice. The intricate relationship between the microbiome and the brain remains a research priority not only to improve the care, but to also improve the long-term neurodevelopmental outcomes in this vulnerable population.


Asunto(s)
Discapacidades del Desarrollo/microbiología , Disbiosis/fisiopatología , Microbioma Gastrointestinal , Enfermedades del Prematuro/microbiología , Enfermedades del Sistema Nervioso/microbiología , Humanos , Lactante , Recien Nacido Extremadamente Prematuro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...