Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 18(9): e1010380, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36095003

RESUMEN

Drosophila Insulin-Producing Cells (IPCs) are the main production site of the Drosophila Insulin-like peptides or dilps which have key roles in regulating growth, development, reproduction, lifespan and metabolism. To better understand the signalling pathways and transcriptional networks that are active in the IPCs we queried publicly available transcriptome data of over 180 highly inbred fly lines for dilp expression and used dilp expression as the input for a Genome-wide association study (GWAS). This resulted in the identification of variants in 125 genes that were associated with variation in dilp expression. The function of 57 of these genes in the IPCs was tested using an RNAi-based approach. We found that IPC-specific depletion of most genes resulted in differences in expression of one or more of the dilps. We then elaborated further on one of the candidate genes with the strongest effect on dilp expression, Homothorax, a transcription factor known for its role in eye development. We found that Homothorax and its binding partner Extradenticle are involved in regulating dilp2, -3 and -5 expression and that genetic depletion of both TFs shows phenotypes associated with reduced insulin signalling. Furthermore, we provide evidence that other transcription factors involved in eye development are also functional in the IPCs. In conclusion, we showed that this expression level-based GWAS approach identified genetic regulators implicated in IPC function and dilp expression.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Estudio de Asociación del Genoma Completo , Insulina/genética , Insulina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Front Endocrinol (Lausanne) ; 12: 600251, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276554

RESUMEN

The insulin-producing cells (IPCs), a group of 14 neurons in the Drosophila brain, regulate numerous processes, including energy homeostasis, lifespan, stress response, fecundity, and various behaviors, such as foraging and sleep. Despite their importance, little is known about the development and the factors that regulate morphological and functional differentiation of IPCs. In this study, we describe the use of a new transgenic reporter to characterize the role of the Drosophila L1-CAM homolog Neuroglian (Nrg), and the transmembrane Semaphorin-1a (Sema-1a) and its receptor Plexin A (PlexA) in the differentiation of the insulin-producing neurons. Loss of Nrg results in defasciculation and abnormal neurite branching, including ectopic neurites in the IPC neurons. Cell-type specific RNAi knockdown experiments reveal that Nrg, Sema-1a and PlexA are required in IPCs and glia to control normal morphological differentiation of IPCs albeit with a stronger contribution of Nrg and Sema-1a in glia and of PlexA in the IPCs. These observations provide new insights into the development of the IPC neurons and identify a novel role for Sema-1a in glia. In addition, we show that Nrg, Sema-1a and PlexA in glia and IPCs not only regulate morphological but also functional differentiation of the IPCs and that the functional deficits are likely independent of the morphological phenotypes. The requirements of nrg, Sema-1a, and PlexA in IPC development and the expression of their vertebrate counterparts in the hypothalamic-pituitary axis, suggest that these functions may be evolutionarily conserved in the establishment of vertebrate endocrine systems.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Diferenciación Celular/fisiología , Proteínas de Drosophila/metabolismo , Insulinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores de Superficie Celular/metabolismo , Semaforinas/metabolismo , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Forma de la Célula/fisiología , Drosophila
3.
Development ; 145(21)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30266830

RESUMEN

Growth and maturation are coordinated processes in all animals. Integration of internal cues, such as signalling pathways, with external cues, such as nutritional status, is paramount for an orderly progression of development and growth. In Drosophila, this involves insulin and steroid signalling, but the underlying mechanisms and their coordination are incompletely understood. We show that bioactive 20-hydroxyecdysone production by the enzyme Shade in the fat body is a nutrient-dependent process. We demonstrate that under fed conditions, Shade plays a role in growth control. We identify the trachea and the insulin-producing cells in the brain as direct targets through which 20-hydroxyecdysone regulates insulin signalling. The identification of trachea-dependent regulation of insulin signalling exposes an important variable that may have been overlooked in other studies focusing on insulin signalling in Drosophila Our findings provide a potentially conserved, novel mechanism by which nutrition can modulate steroid hormone bioactivation, reveal an important caveat of a commonly used transgenic tool to study insulin-producing cell function, and yield further insights into how steroid and insulin signalling are coordinated during development to regulate growth and developmental timing.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Transducción de Señal , Esteroides/metabolismo , Animales , Ecdisona/metabolismo , Ecdisterona/metabolismo , Cuerpo Adiposo/metabolismo , Técnicas de Silenciamiento del Gen , Factor I del Crecimiento Similar a la Insulina/metabolismo , Larva/metabolismo , Modelos Biológicos , Fenotipo , Receptores de Esteroides/metabolismo , Tráquea/metabolismo
4.
PLoS One ; 12(11): e0188537, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29166674

RESUMEN

Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD), anxiety, conduct disorder, and posttraumatic stress disorder (PTSD). Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC) and prefrontal cortex (PFC) might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS) on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J) that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF) in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.


Asunto(s)
Conducta Animal , Aprendizaje Discriminativo , Conducta Social , Estrés Psicológico/patología , Animales , Ansiedad , Biomarcadores/sangre , Peso Corporal , Enfermedad Crónica , Condicionamiento Psicológico , Corticosterona/sangre , Conducta Exploratoria , Femenino , Regulación de la Expresión Génica , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estrés Psicológico/genética , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
5.
Front Cell Neurosci ; 10: 210, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27656129

RESUMEN

Correct wiring of the mushroom body (MB) neuropil in the Drosophila brain involves appropriate positioning of different axonal lobes, as well as the sister branches that develop from individual axons. This positioning requires the integration of various guidance cues provided by different cell types, which help the axons find their final positions within the neuropil. Semaphorins are well-known for their conserved roles in neuronal development and axon guidance. We investigated the role of Sema-1a in MB development more closely. We show that Sema-1a is expressed in the MBs as well as surrounding structures, including the glial transient interhemispheric fibrous ring, throughout development. By loss- and gain-of-function experiments, we show that the MB axons display lobe and sister branch-specific Sema-1a signaling, which controls different aspects of axon outgrowth and guidance. Furthermore, we demonstrate that these effects are modulated by the integration of MB intrinsic and extrinsic Sema-1a signaling pathways involving PlexA and PlexB. Finally, we also show a role for neuronal- glial interaction in Sema-1a dependent ß-lobe outgrowth.

6.
Nat Commun ; 6: 10115, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26656654

RESUMEN

Genetic variation in brain size may provide the basis for the evolution of the brain and complex behaviours. The genetic substrate and the selective pressures acting on brain size are poorly understood. Here we use the Drosophila Genetic Reference Panel to map polymorphic variants affecting natural variation in mushroom body morphology. We identify 139 genes and 39 transcription factors and confirm effects on development and adult plasticity. We show correlations between morphology and aggression, sleep and lifespan. We propose that natural variation in adult brain size is controlled by interaction of the environment with gene networks controlling development and plasticity.


Asunto(s)
Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Cuerpos Pedunculados/anatomía & histología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/fisiología , Masculino , Interferencia de ARN , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 1): m99-m100, 2010 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-21522611

RESUMEN

The title compound, [RuCl(2)(C(10)H(14))(C(6)H(6)FN)], a pseudo-octa-hedral d(6) complex, has the expected piano-stool geometry around the Ru(II) atom. The fluoro-aniline ring forms a dihedral angle of 19.3 (2)° with the p-cymene ring. In the crystal, two mol-ecules form an inversion dimer via a pair of N-H⋯Cl hydrogen bonds. Weak inter-molecular C-H⋯Cl inter-actions involving the p-cymene ring consolidate the crystal packing.

8.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 12): m1639-40, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21589311

RESUMEN

In the title compound, [Pd(C(9)H(12)N)Cl(C(4)H(6)N(2))], which was synthesized from the reaction of 1-methyl-imidazole with dimeric dichloridobis[2-(dimethyl-amino)-benz-yl]palla-dium(II), the ring-deprotonated N,N-dimethyl-benzyl-amine ligand acts in a C,N-bidentate fashion. The dihedral angle between the ring of the 1-methyl-imidazole ligand and the palladacycle plane is 57.88 (16)°. The two N atoms from the N,N-dimethyl-benzyl-amine and 1-methyl-imidazole ligands are trans coordinated to the Pd(II) atom.

9.
Dev Biol ; 334(2): 503-12, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19666017

RESUMEN

Pax6 genes encode evolutionarily highly conserved transcription factors that are required for eye and brain development. Despite the characterization of mutations in Pax6 homologs in a range of organisms, and despite functional studies, it remains unclear what the relative importance is of the various parts of the Pax6 protein. To address this, we have studied the Drosophila Pax6 homolog eyeless. Specifically, we have generated new eyeless alleles, each with single missense mutations in one of the four domains of the protein. We show that these alleles result in abnormal eye and brain development while maintaining the OK107 eyeless GAL4 activity from which they were derived. We performed in vivo functional rescue experiments by expressing in an eyeless-specific pattern Eyeless proteins in which either the paired domain, the homeodomain, or the C-terminal domain was deleted. Rescue of the eye and brain phenotypes was only observed when full-length Eyeless was expressed, while all deletion constructs failed to rescue. These data, along with the phenotypes observed in the four newly characterized eyeless alleles, demonstrate the requirement for an intact Eyeless protein for normal Drosophila eye and brain development. They also suggest that some endogenous functions may be obscured in ectopic expression experiments.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Ojo Compuesto de los Artrópodos/crecimiento & desarrollo , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Mutación Missense , Mutación Puntual , Alelos , Animales , Células Cultivadas , Cruzamientos Genéticos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Prueba de Complementación Genética , Genotipo , Cabeza/crecimiento & desarrollo , Masculino , Fenotipo , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Activación Transcripcional
10.
Proc Natl Acad Sci U S A ; 105(42): 16183-8, 2008 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-18852455

RESUMEN

Insulin/insulin-like growth factor (IGF) signaling constitutes an evolutionarily conserved pathway that controls growth, energy homeostasis, and longevity. In Drosophila melanogaster, key components of this pathway are the insulin-like peptides (Dilps). The major source of Dilps is a cluster of large neurons in the brain, the insulin-producing cells (IPCs). The genetic control of IPC development and function is poorly understood. Here, we demonstrate that the Pax6 homolog Eyeless is required in the IPCs to control their differentiation and function. Loss of eyeless results in phenotypes associated with loss of insulin signaling, including decreased animal size and increased carbohydrate levels in larval hemolymph. We show that mutations in eyeless lead to defective differentiation and morphologically abnormal IPCs. We also demonstrate that Eyeless controls IPC function by the direct transcriptional control of one of the major Dilps, dilp5. We propose that Eyeless has an evolutionarily conserved role in IPCs with remarkable similarities to the role of vertebrate Pax6 in beta cells of the pancreas.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas del Ojo , Proteínas de Homeodominio , Insulina/biosíntesis , Insulinas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción Paired Box , Proteínas Represoras , Animales , Secuencia de Bases , Diferenciación Celular , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Insulinas/genética , Masculino , Datos de Secuencia Molecular , Mutación/genética , Factor de Transcripción PAX6 , Transducción de Señal , Transcripción Genética/genética
11.
Proc Natl Acad Sci U S A ; 105(26): 8968-73, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18577588

RESUMEN

Ectopic expression of the retinal determination gene eyeless (ey) induces the formation of supernumerary eyes on antennae, legs, wings, and halteres. These ectopic eyes form ommatidia that contain photoreceptors and accessory cells and respond to light. Here, we demonstrate that ectopic eyes on antennae and legs extend axonal projections to the central nervous system. Furthermore, electroretinograms and morphological evidence indicate that the photoreceptor axons of at least the antennal ectopic eyes can form completely constituted ectopic synapses with foreign postsynaptic elements and suggest that transmission at these sites may be functional. However, the ectopic axons do not connect to their correct optic lobe targets and do not project deeply into the neuropile, but rather form synapses at superficial positions in the neuropils. By means of confocal and electron microscopy we show that these ectopic synapses resemble normal synapses, albeit with some distinct morphological differences. Our data strongly suggest that the developmental programs controlling photoreceptor synaptogenesis and visual map formation depend to a considerable extent on presynaptic and thus photoreceptor-autonomous steps. Our data also suggest that photoreceptor axon projections and the establishment of the highly stereotypical neural circuitry in the optic lobe, the normal target neuropil, may depend on target-specific cues that appear to be absent from the antennal lobe and thoracic ganglion.


Asunto(s)
Axones/metabolismo , Coristoma/patología , Drosophila melanogaster/crecimiento & desarrollo , Ojo/patología , Células Fotorreceptoras de Invertebrados/patología , Animales , Axones/ultraestructura , Sistema Nervioso Central/ultraestructura , Drosophila melanogaster/ultraestructura , Electrofisiología , Electrorretinografía , Ojo/ultraestructura , Células Fotorreceptoras de Invertebrados/crecimiento & desarrollo , Células Fotorreceptoras de Invertebrados/ultraestructura , Sinapsis/ultraestructura
12.
Arthropod Struct Dev ; 35(4): 379-91, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18089082

RESUMEN

The arthropod compound eye is one of the three main types of eyes observed in the animal kingdom. Comparison of the eyes seen in Insecta, Crustacea, Myriapoda and Chelicerata reveals considerable variation in terms of overall cell number, cell positioning, and photoreceptor rhabdomeres, yet, molecular data suggest there may be unexpected similarities. We review here the role of Pax6 in eye development and evolution and the relationship of Pax6 with other retinal determination genes and signaling pathways. We then discuss how the study of changes in Pax6 primary structure, in the gene networks controlled by Pax6 and in the relationship of Pax6 with signaling pathways may contribute to our insight into the relative role of conserved molecular-genetic mechanisms and emergence of evolutionary novelty in shaping the ommatidial eyes seen in the Arthropoda.

13.
Mech Dev ; 120(10): 1113-26, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14568101

RESUMEN

The Drosophila Pax-6 homologs eyeless (ey) and twin of eyeless (toy) are expressed in the eyes and in the central nervous system (CNS). In addition to the pivotal functions in eye development, previous studies revealed that ey also plays important roles in axonal development of the mushroom bodies, centers for associative learning and memory. It has been reported that a second intron enhancer that contains several Pax-6 binding sites mainly controls the eye-specific expression, but the DNA sequences that control CNS expression are unknown. In this work, we have dissected transcriptional enhancer elements of the ey gene that are required for the CNS expression in various developmental stages. We first show that CNS expression is independent of the eye-specific enhancer of the second intron. By systematic reporter studies, we have identified several discrete DNA elements in the 5' upstream region and in the second intron that cooperatively interact to generate most of the ey expression pattern in the CNS. DNA sequence comparison between the ey genes of distant Drosophila species has identified conserved modules that might be bound by the upstream regulatory factors of the ey gene in CNS development. Furthermore, by RNA interference and mutant studies, we show that ey expression in the brain is independent of the activity of toy and ey itself whereas in the eye primordia it requires both, supporting the notion that ey and toy are regulated by parallel and independent regulatory cascades in brain development.


Asunto(s)
Encéfalo/embriología , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Animales , Encéfalo/metabolismo , Elementos Transponibles de ADN , Proteínas de Unión al ADN/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Elementos de Facilitación Genéticos , Proteínas del Ojo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Intrones , Ratones , Datos de Secuencia Molecular , Especificidad de Órganos , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box , Proteínas Represoras , Transactivadores/genética , Transactivadores/metabolismo
14.
Development ; 130(3): 575-86, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12490563

RESUMEN

Diversification of Drosophila segmental and cellular identities both require the combinatorial function of homeodomain-containing transcription factors. Ectopic expression of the mouthparts selector proboscipedia (pb) directs a homeotic antenna-to-maxillary palp transformation. It also induces a dosage-sensitive eye loss that we used to screen for dominant Enhancer mutations. Four such Enhancer mutations were alleles of the eyeless (ey) gene that encode truncated EY proteins. Apart from eye loss, these new eyeless alleles lead to defects in the adult olfactory appendages: the maxillary palps and antennae. In support of these observations, both ey and pb are expressed in cell subsets of the prepupal maxillary primordium of the antennal imaginal disc, beginning early in pupal development. Transient co-expression is detected early after this onset, but is apparently resolved to yield exclusive groups of cells expressing either PB or EY proteins. A combination of in vivo and in vitro approaches indicates that PB suppresses EY transactivation activity via protein-protein contacts of the PB homeodomain and EY Paired domain. The direct functional antagonism between PB and EY proteins suggests a novel crosstalk mechanism integrating known selector functions in Drosophila head morphogenesis.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/genética , Genes Homeobox , Genes de Insecto , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN/genética , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Anomalías del Ojo/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Cabeza/crecimiento & desarrollo , Proteínas de Homeodominio/fisiología , Técnicas In Vitro , Masculino , Maxilar/crecimiento & desarrollo , Datos de Secuencia Molecular , Mutación , Fenotipo , Factores de Transcripción/fisiología , Activación Transcripcional , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...