Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biophys Rep (N Y) ; 4(3): 100167, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909903

RESUMEN

Significant efforts have been made to characterize the biophysical properties of proteins. Small proteins have received less attention because their annotation has historically been less reliable. However, recent improvements in sequencing, proteomics, and bioinformatics techniques have led to the high-confidence annotation of small open reading frames (smORFs) that encode for functional proteins, producing smORF-encoded proteins (SEPs). SEPs have been found to perform critical functions in several species, including humans. While significant efforts have been made to annotate SEPs, less attention has been given to the biophysical properties of these proteins. We characterized the distributions of predicted and curated biophysical properties, including sequence composition, structure, localization, function, and disease association of a conservative list of previously identified human SEPs. We found significant differences between SEPs and both larger proteins and control sets. In addition, we provide an example of how our characterization of biophysical properties can contribute to distinguishing protein-coding smORFs from noncoding ones in otherwise ambiguous cases.

2.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659920

RESUMEN

Significant efforts have been made to characterize the biophysical properties of proteins. Small proteins have received less attention because their annotation has historically been less reliable. However, recent improvements in sequencing, proteomics, and bioinformatics techniques have led to the high-confidence annotation of small open reading frames (smORFs) that encode for functional proteins, producing smORF-encoded proteins (SEPs). SEPs have been found to perform critical functions in several species, including humans. While significant efforts have been made to annotate SEPs, less attention has been given to the biophysical properties of these proteins. We characterized the distributions of predicted and curated biophysical properties, including sequence composition, structure, localization, function, and disease association of a conservative list of previously identified human SEPs. We found significant differences between SEPs and both larger proteins and control sets. Additionally, we provide an example of how our characterization of biophysical properties can contribute to distinguishing protein-coding smORFs from non-coding ones in otherwise ambiguous cases.

3.
Biochemistry ; 56(5): 683-691, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28045494

RESUMEN

Fibrillar aggregates of the protein α-synuclein (αS) are one of the hallmarks of Parkinson's disease. Here, we show that measuring the fluorescence polarization (FP) of labels at several sites on αS allows one to monitor changes in the local dynamics of the protein after binding to micelles or vesicles, and during fibril formation. Most significantly, these site-specific FP measurements provide insight into structural remodeling of αS fibrils by small molecules and have the potential for use in moderate-throughput screens to identify small molecules that could be used to treat Parkinson's disease.


Asunto(s)
Catequina/análogos & derivados , Dopamina/química , Masoprocol/química , Agregado de Proteínas/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , alfa-Sinucleína/química , Secuencia de Aminoácidos , Catequina/química , Catequina/farmacología , Dopamina/farmacología , Polarización de Fluorescencia , Colorantes Fluorescentes/química , Humanos , Masoprocol/metabolismo , Fosfatidilcolinas/química , Proteínas Recombinantes/química , Bibliotecas de Moléculas Pequeñas/farmacología , Dodecil Sulfato de Sodio/química , Liposomas Unilamelares/química , Xantenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA