Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 109: 129823, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823727

RESUMEN

The tyrosinase (TYR) enzyme catalyses sequential reactions in the melanogenesis pathway: l-tyrosine is oxidised to yield L-3,4-dihydroxyphenylalanine (l-dopa), which in turn is converted to dopaquinone. These two reactions are the first two steps of melanin biosynthesis and are rate limiting. The accumulation or overproduction of melanin may cause skin hyperpigmentation and inhibitors of TYR are thus of interest to the cosmeceutical industry. Several TYR inhibitors are used to treat skin hyperpigmentation, however, some are ineffective and possess questionable safety profiles. This emphasises the need to develop novel TYR inhibitors with better safety and efficacy profiles. The small molecule, 3-hydroxycoumarin, has been reported to be a good potency TYR inhibitor (IC50 = 2.49 µM), and based on this, a series of eight structurally related 3-hydroxyquinolin-2(1H)-one derivatives were synthesised with the aim to discover novel TYR inhibitors. The results showed that four of the derivatives inhibited TYR from the champignon mushroom Agaricus bisporus (abTYR) with IC50 < 6.11 µM. The most potent inhibitor displayed an IC50 value of 2.52 µM. Under the same conditions, the reference inhibitors, thiamidol and kojic acid, inhibited abTYR with IC50 values of 0.130 and 26.4 µM, respectively. Based on the small molecular structures of the active 3-hydroxyquinolin-2(1H)-one inhibitors which are amenable to structure optimisation, it may be concluded that this class of compounds are good leads for the design of TYR inhibitors for cosmeceutical applications.


Asunto(s)
Inhibidores Enzimáticos , Monofenol Monooxigenasa , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Relación Estructura-Actividad , Estructura Molecular , Agaricus/enzimología , Relación Dosis-Respuesta a Droga
2.
Mol Divers ; 25(1): 491-507, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32970293

RESUMEN

Monoamine oxidase (MAO) is of much clinical relevance, and inhibitors of this enzyme are used in the treatment for neuropsychiatric and neurodegenerative disorders such as depression and Parkinson's disease. The present study synthesises and evaluates the MAO inhibition properties of a series of 33 1-tetralone and 4-chromanone derivatives in an attempt to discover high-potency compounds and to expand on the structure-activity relationships of MAO inhibition by these classes. Among these series, eight submicromolar MAO-A inhibitors and 28 submicromolar MAO-B inhibitors are reported, with all compounds acting as specific inhibitors of the MAO-B isoform. The most potent inhibitor was a 1-tetralone derivative (1h) with IC50 values of 0.036 and 0.0011 µM for MAO-A and MAO-B, respectively. Interestingly, with the reduction of 1-tetralones to the corresponding alcohols, a decrease in MAO inhibition potency is observed. Among these 1-tetralol derivatives, 1p (IC50 = 0.785 µM) and 1o (IC50 = 0.0075 µM) were identified as particularly potent inhibitors of MAO-A and MAO-B, respectively. Potent compounds such as those reported here may act as leads for the future development of MAO-B specific inhibitors. The present study describes the MAO inhibitory activities of a series of 1-tetralone and 4-chromanone derivatives. Numerous high-potency MAO-B specific inhibitors were identified.


Asunto(s)
Cromonas/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Tetralonas/farmacología , Cromonas/química , Humanos , Concentración 50 Inhibidora , Cinética , Inhibidores de la Monoaminooxidasa/química , Proteínas Recombinantes/metabolismo , Tetralonas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA