Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomol Screen ; 15(7): 882-91, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20639503

RESUMEN

The effective analysis and interpretation of high-content screening (HCS) data requires joining results to information on experimental treatments and controls, normalizing data, and selecting hits or fitting concentration-response curves. HCS data have unique requirements that are not supported by traditional high-throughput screening databases, including the ability to designate separate positive and negative controls for different measurements in multiplexed assays; the ability to capture information on the cell lines, fluorescent reagents, and treatments in each assay; the ability to store and use individual-cell and image data; and the ability to support HCS readers and software from multiple vendors along with third-party image analysis tools. To address these requirements, the authors developed an enterprise system for the storage and processing of HCS images and results. This system, HCS Road, supports target identification, lead discovery, lead evaluation, and lead profiling activities. A dedicated client supports experimental design, data review, and core analyses and displays images together with results for assay development, hit assessment, and troubleshooting. Data can be exported to third-party applications for further analysis and exploration. HCS Road provides a single source for high-content results across the organization, regardless of the group or instrument that produced them.


Asunto(s)
Sistemas de Administración de Bases de Datos , Ensayos Analíticos de Alto Rendimiento/métodos , Estadística como Asunto , Interferencia de ARN
2.
J Biomol Screen ; 14(5): 476-84, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19483144

RESUMEN

Preserving the integrity of the compound collection and providing high-quality materials for drug discovery in an efficient and cost-effective manner are 2 major challenges faced by compound management (CM) at Bristol-Myers Squibb (BMS). The demands on CM include delivering hundreds of thousands of compounds a year to a variety of operations. These operations range from single-compound requests to hit identification support and just-in-time assay plate provision for lead optimization. Support needs for these processes consist of the ability to rapidly provide compounds as solids or solutions in a variety of formats, establishing proper long- and short-term storage conditions and creating appropriate methods for handling concentrated, potent compounds for delivery to sensitive biological assays. A series of experiments evaluating the effects of processing compounds with volatile solvents, storage conditions that can induce freeze/thaw cycles, and the delivery of compounds were performed. This article presents the results of these experiments and how they affect compound integrity and the accuracy of compound management processes.


Asunto(s)
Bioensayo , Descubrimiento de Drogas , Estabilidad de Medicamentos , Bioensayo/instrumentación , Bioensayo/métodos , Bioensayo/normas , Descubrimiento de Drogas/instrumentación , Descubrimiento de Drogas/métodos , Preparaciones Farmacéuticas/química , Reproducibilidad de los Resultados
3.
Inorg Chem ; 46(16): 6632-9, 2007 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-17625839

RESUMEN

The amphiphilic gadolinium complex MS-325 ((trisodium-{(2-(R)-[(4,4-diphenylcyclohexyl) phosphonooxymethyl] diethylenetriaminepentaacetato) (aquo)gadolinium(III)}) is a contrast agent for magnetic resonance angiography (MRA). MS-325 consists of two slowly interconverting diastereoisomers, A and B (65:35 ratio), which can be isolated at pH > 8.5 (TyeklAr, Z.; Dunham, S. U.; Midelfort, K.; Scott, D. M.; Sajiki, H.; Ong, K.; Lauffer, R. B.; Caravan, P.; McMurry, T. J. Inorg. Chem. 2007, 46, 6621-6631). MS-325 binds to human serum albumin (HSA) in plasma resulting in an extended plasma half-life, retention of the agent within the blood compartment, and an increased relaxation rate of water protons in plasma. Under physiological conditions (37 degrees C, pH 7.4, phosphate buffered saline (PBS), 4.5% HSA, 0.05 mM complex), there is no statistical difference in HSA affinity or relaxivity between the two isomers (A 88.6 +/- 0.6% bound, r1 = 42.0 +/- 1.0 mM(-1) s(-1) at 20 MHz; B 90.2 +/- 0.6% bound, r1 = 38.3 +/- 1.0 mM(-1) s(-1) at 20 MHz; errors represent 1 standard deviation). At lower temperatures, isomer A has a higher relaxivity than isomer B. The water exchange rates in the absence of HSA at 298 K, kA298 = 5.9 +/- 2.8 x 10(6) s(-1), kB298 = 3.2 +/- 1.8 x 10(6) s(-1), and heats of activation, DeltaHA = 56 +/- 8 kJ/mol, DeltaHB = 59 +/- 11 kJ/mol, were determined by variable-temperature 17O NMR at 7.05 T. Proton nuclear magnetic relaxation dispersion (NMRD) profiles were recorded over the frequency range of 0.01-50 MHz at 5, 15, 25, and 35 degrees C in a 4.5% HSA in PBS solution for each isomer (0.1 mM). Differences in the relaxivity in HSA between the two isomers could be attributed to the differing water exchange rates.


Asunto(s)
Albúminas/química , Medios de Contraste/química , Gadolinio/química , Angiografía por Resonancia Magnética/instrumentación , Compuestos Organometálicos/química , Agua/química , Medios de Contraste/farmacología , Relación Dosis-Respuesta a Droga , Cinética , Angiografía por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Modelos Químicos , Unión Proteica , Protones , Estereoisomerismo , Temperatura , Termodinámica
4.
Chemistry ; 11(20): 5866-74, 2005 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-16052656

RESUMEN

The synthesis of a novel ligand, based on N-methyl-diethylenetriaminetetraacetate and containing a diphenylcyclohexyl serum albumin binding group (L1) is described and the coordination chemistry and biophysical properties of its Gd(III) complex Gd-L1 are reported. The Gd(III) complex of the diethylenetriaminepentaacetate analogue of the ligand described here (L2) is the MRI contrast agent MS-325. The effect of converting an acetate to a methyl group on metal-ligand stability, hydration number, water-exchange rate, relaxivity, and binding to the protein human serum albumin (HSA) is explored. The complex Gd-L1 has two coordinated water molecules in solution, that is, [Gd(L1)(H2O)2]2- as shown by D-band proton ENDOR spectroscopy and implied by 1H and 17O NMR relaxation rate measurements. The Gd-H(water) distance of the coordinated waters was found to be identical to that found for Gd-L2, 3.08 A. Loss of the acetate group destabilizes the Gd(III) complex by 1.7 log units (log K(ML) = 20.34) relative to the complex with L2. The affinity of Gd-L1 for HSA is essentially the same as that of Gd-L2. The water-exchange rate of the two coordinated waters on Gd-L1 (k(ex) = 4.4x10(5) s(-1)) is slowed by an order of magnitude relative to Gd-L2. As a result of this slow water-exchange rate, the observed proton relaxivity of Gd-L1 is much lower in a solution of HSA under physiological conditions (r1(obs) = 22.0 mM(-1) s(-1) for 0.1 mM Gd-L1 in 0.67 mM HSA, HEPES buffer, pH 7.4, 35 degrees C at 20 MHz) than that of Gd-L2 (r1(obs) = 41.5 mM(-1) s(-1)) measured under the same conditions. Despite having two exchangeable water molecules, slow water exchange limits the potential efficacy of Gd-L1 as an MRI contrast agent.


Asunto(s)
Gadolinio DTPA/química , Agua/química , Medios de Contraste , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Ultrafiltración
5.
J Am Chem Soc ; 124(12): 3152-62, 2002 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-11902904

RESUMEN

MS-325 is a novel blood pool contrast agent for magnetic resonance imaging currently undergoing clinical trials to assess blockage in arteries. MS-325 functions by binding to human serum albumin (HSA) in plasma. Binding to HSA serves to prolong plasma half-life, retain the agent in the blood pool, and increase the relaxation rate of water protons in plasma. Ultrafiltration studies with a 5 kDa molecular weight cutoff filter show that MS-325 binds to HSA with stepwise stoichiometric affinity constants (mM(-1)) of K(a1) = 11.0 +/- 2.7, K(a2) = 0.84 +/- 0.16, K(a3) = 0.26 +/- 0.14, and K(a4) = 0.43 +/- 0.24. Under the conditions 0.1 mM MS-325, 4.5% HSA, pH 7.4 (phosphate-buffered saline), and 37 degrees C, 88 +/- 2% of MS-325 is bound to albumin. Fluorescent probe displacement studies show that MS-325 can displace dansyl sarcosine and dansyl-L-asparagine from HSA with inhibition constants (K(i)) of 85 +/- 3 microM and 1500 +/- 850 microM, respectively; however, MS-325 is unable to displace warfarin. These results suggest that MS-325 binds primarily to site II on HSA. The relaxivity of MS-325 when bound to HSA is shown to be site dependent. The Eu(III) analogue of MS-325 is shown to contain one inner-sphere water molecule in the presence and in the absence of HSA. The synthesis of an MS-325 analogue, 5, containing no inner-sphere water molecules is described. Compound 5 is used to estimate the contribution to relaxivity from the outer-sphere water molecules surrounding MS-325. The high relaxivity of MS-325 bound to HSA is primarily because of a 60-100-fold increase in the rotational correlation time of the molecule upon binding (tau(R) = 10.1 +/- 2.6 ns bound vs 115 ps free). Analysis of the nuclear magnetic relaxation dispersion (T(1) and T(2)) profiles also suggests a decrease in the electronic relaxation rate (1/T(1e) at 20 MHz = 2.0 x 10(8) s(-1) bound vs 1.1 x 10(9) s(-1) free) and an increase in the inner-sphere water residency time (tau(m) = 170 +/- 40 ns bound vs 69 +/- 20 ns free).


Asunto(s)
Compuestos Organometálicos/química , Albúmina Sérica/química , Sitios de Unión , Unión Competitiva , Medios de Contraste/química , Medios de Contraste/metabolismo , Gadolinio , Humanos , Cinética , Imagen por Resonancia Magnética , Compuestos Organometálicos/metabolismo , Unión Proteica , Protones , Albúmina Sérica/metabolismo , Ultrafiltración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA