Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
1.
Dev Comp Immunol ; 156: 105161, 2024 Jul.
Article En | MEDLINE | ID: mdl-38521379

Low-oxygen levels (hypoxia) in aquatic habitats are becoming more common because of global warming and eutrophication. However, the effects on the health/disease status of fishes, the world's largest group of vertebrates, are unclear. Therefore, we assessed how long-term hypoxia affected the immune function of sablefish, an ecologically and economically important North Pacific species, including the response to a formalin-killed Aeromonas salmonicida bacterin. Sablefish were held at normoxia or hypoxia (100% or 40% air saturated seawater, respectively) for 6-16 weeks, while we measured a diverse array of immunological traits. Given that the sablefish is a non-model organism, this involved the development of a species-specific methodological toolbox comprised of qPCR primers for 16 key immune genes, assays for blood antibacterial defences, the assessment of blood immunoglobulin (IgM) levels with ELISA, and flow cytometry and confocal microscopy techniques. We show that innate immune parameters were typically elevated in response to the bacterial antigens, but were not substantially affected by hypoxia. In contrast, hypoxia completely prevented the ∼1.5-fold increase in blood IgM level that was observed under normoxic conditions following bacterin exposure, implying a serious impairment of adaptive immunity. Since the sablefish is naturally hypoxia tolerant, our results demonstrate that climate change-related deoxygenation may be a serious threat to the immune competency of fishes.


Adaptive Immunity , Aeromonas salmonicida , Climate Change , Fish Diseases , Animals , Aeromonas salmonicida/immunology , Aeromonas salmonicida/physiology , Fish Diseases/immunology , Fish Diseases/microbiology , Hypoxia/immunology , Immunity, Innate , Immunoglobulin M/blood , Immunoglobulin M/immunology , Fishes/immunology , Fishes/microbiology , Oxygen/metabolism , Gram-Negative Bacterial Infections/immunology , Antigens, Bacterial/immunology
2.
J Therm Biol ; 101: 103102, 2021 Oct.
Article En | MEDLINE | ID: mdl-34879919

Fish can be identified as either low responders (LR) or high responders (HR) based on post-stress cortisol levels and whether they exhibit a proactive or reactive stress coping style, respectively. In this study, male Atlantic salmon (Salmo salar) from 17 families reared at 9 °C were repeatedly exposed to an acute handling stress over a period of four months, with plasma cortisol levels measured at 1 h post-stress. Fish were identified as either LR or HR if the total Z-score calculated from their cortisol responses fell into the lower or upper quartile ranges, respectively; with intermediate responders (IR) classified as the remainder. Salmon characterized as LR, IR or HR were then subjected to an incremental thermal challenge, where temperature was raised at 0.2 °C day-1 from their acclimation temperature (12 °C) to mimic natural sea-cage farming conditions during the summer in Newfoundland. Interestingly, feed intake remained high up to 22 °C, while previous studies have shown a decrease in salmon appetite after ∼16-18 °C. After the first three mortalities were recorded at elevated temperature, a subset of LR and HR salmon were exposed to another acute handling stress event at 23.6 °C. Basal and post-stress measurements of plasma cortisol, glucose and lactate did not differ between stress response phenotypes at this temperature. In the end, the average incremental thermal maximum (ITMax) of LR and HR fish was not different (25.1 °C). In comparison, the critical thermal maximum (CTMax; temperature increased at 2 °C h-1) of the remaining IR fish that had been held at 12 °C was 28.5 °C. Collectively, these results: 1) show that this population of Atlantic salmon is very thermally tolerant, and further question the relevance of CTMax in assessing responses to real-world temperature changes; and 2) indicate that characterization of stress phenotype at 9 °C is not predictive of their stress response or survival at high temperatures. Therefore, selection of fish based on phenotypic stress response at low temperatures may not be beneficial to incorporate into Atlantic salmon breeding programs, especially if the goal is to improve growth performance and survival at high temperatures in sea-cages.


Salmo salar/physiology , Temperature , Thermotolerance , Animals , Blood Glucose/analysis , Hematocrit , Hemoglobins/analysis , Hydrocortisone/blood , Lactic Acid/blood , Male , Phenotype , Salmo salar/blood , Stress, Physiological , Weight Gain
3.
Antioxidants (Basel) ; 10(7)2021 Jul 03.
Article En | MEDLINE | ID: mdl-34356305

The dynamic interactions between nitric oxide (NO) and myoglobin (Mb) in the cardiovascular system have received considerable attention. The loss of Mb, the principal O2 carrier and a NO scavenger/producer, in the heart of some red-blooded fishes provides a unique opportunity for assessing this globin's role in NO homeostasis and mitochondrial function. We measured Mb content, activities of enzymes of NO and aerobic metabolism [NO Synthase (NOS) and citrate synthase, respectively] and mitochondrial parameters [Complex-I and -I+II respiration, coupling efficiency, reactive oxygen species production/release rates and mitochondrial sensitivity to inhibition by NO (i.e., NO IC50)] in the heart of three species of red-blooded fish. The expression of Mb correlated positively with NOS activity and NO IC50, with low NOS activity and a reduced NO IC50 in the Mb-lacking lumpfish (Cyclopterus lumpus) as compared to the Mb-expressing Atlantic salmon (Salmo salar) and short-horned sculpin (Myoxocephalus scorpius). Collectively, our data show that NO levels are fine-tuned so that NO homeostasis and mitochondrial function are preserved; indicate that compensatory mechanisms are in place to tightly regulate [NO] and mitochondrial function in a species without Mb; and strongly suggest that the NO IC50 for oxidative phosphorylation is closely related to a fish's hypoxia tolerance.

4.
J Exp Biol ; 224(Pt 2)2021 01 26.
Article En | MEDLINE | ID: mdl-33288533

In fish, the capacity of thermal acclimation to preserve cardiac mitochondrial function under future warming scenarios is important to understand given the central roles that cardiac energy metabolism and performance play in this taxa's thermal tolerance. We acclimated Atlantic salmon to 12 and 20°C (for >2 months), and investigated the effects of acute and chronic warming on cardiac mitochondrial respiration and reactive oxygen species (ROS) production (release rate) using high-resolution fluorespirometry. Further, we compared the sensitivity of mitochondrial respiration to nitric oxide (i.e. the NO IC50), and assessed the mitochondrial response to anoxia-reoxygenation (AR). Acute exposure to 20°C increased maximal mitochondrial respiration by ∼55%; however, the mitochondria's complex I respiratory control ratio was 17% lower and ROS production was increased by ≥60%. Acclimation to 20°C: (1) preserved mitochondrial coupling and aerobic capacity; (2) decreased the mitochondria's ROS production by ∼30%; (3) increased the mitochondria's NO IC50 by ∼23%; and (4) improved mitochondrial membrane integrity at 20°C. AR did not affect mitochondrial function at 12°C, but acute exposure to 20°C and AR depressed maximal mitochondrial respiration (by ∼9%) and coupling (by ∼16%) without impacting ROS production. Finally, warm acclimation did not improve the capacity of mitochondria to recover from AR, indicating that there was no 'cross-tolerance' between these challenges. Our findings provide compelling evidence that thermal plasticity of cardiac mitochondrial function contributes to the Atlantic salmon's capability to survive at ≥20°C for prolonged periods, but call into question whether this plasticity may allow them to withstand high temperatures when combined with other stressors.


Salmo salar , Acclimatization , Animals , Electron Transport Complex I , Mitochondria , Temperature
5.
Sci Rep ; 10(1): 21636, 2020 12 10.
Article En | MEDLINE | ID: mdl-33303856

Mitochondrial function can provide key insights into how fish will respond to climate change, due to its important role in heart performance, energy metabolism and oxidative stress. However, whether warm acclimation can maintain or improve the energetic status of the fish heart when exposed to short-term heat stress is not well understood. We acclimated Atlantic salmon, a highly aerobic eurythermal species, to 12 and 20 °C, then measured cardiac mitochondrial functionality and integrity at 20 °C and at 24, 26 and 28 °C (this species' critical thermal maximum ± 2 °C). Acclimation to 20 °C vs. 12 °C enhanced many aspects of mitochondrial respiratory capacity and efficiency up to 24 °C, and preserved outer mitochondrial membrane integrity up to 26 °C. Further, reactive oxygen species (ROS) production was dramatically decreased at all temperatures. These data suggest that salmon acclimated to 'normal' maximum summer temperatures are capable of surviving all but the most extreme ocean heat waves, and that there is no 'tradeoff' in heart mitochondrial function when Atlantic salmon are acclimated to high temperatures (i.e., increased oxidative phosphorylation does not result in heightened ROS production). This study suggests that fish species may show quite different acclimatory responses when exposed to prolonged high temperatures, and thus, susceptibility to climate warming.


Acclimatization/physiology , Climate Change , Hot Temperature , Mitochondria/metabolism , Salmo salar/physiology , Animals , Energy Metabolism , Oxidative Phosphorylation , Oxygen Consumption , Reactive Oxygen Species/metabolism
6.
Int J Mol Sci ; 21(11)2020 Jun 02.
Article En | MEDLINE | ID: mdl-32498303

Macrophages are among the first cells to respond to infection and disease. While microRNAs (miRNAs) are involved in the process of monocyte-to-macrophage differentiation in mammals, less is known in teleost fish. Here, Atlantic salmon head kidney leukocytes (HKLs) were used to study the expression of miRNAs in response to in vitro culture. The morphological analysis of cultures showed predominantly monocyte-like cells on Day 1 and macrophage-like cells on Day 5, suggesting that the HKLs had differentiated from monocytes to macrophages. Day 5 HKLs also contained a higher percentage of phagocytic cells. Small RNA sequencing and qPCR analysis were applied to examine the miRNA diversity and expression. There were 370 known mature Atlantic salmon miRNAs in HKLs. Twenty-two miRNAs (15 families) were downregulated while 44 miRNAs (25 families) were upregulated on Day 5 vs. Day 1. Mammalian orthologs of many of the differentially expressed (DE) miRNAs are known to regulate macrophage activation and differentiation, while the teleost-specific miR-2188, miR-462 and miR-731 were also DE and are associated with immune responses in fish. In silico predictions identified several putative target genes of qPCR-validated miRNAs associated with vertebrate macrophage differentiation. This study identified Atlantic salmon miRNAs likely to influence macrophage differentiation, providing important knowledge for future functional studies.


Head Kidney/cytology , Macrophages/cytology , MicroRNAs/genetics , Monocytes/cytology , Salmo salar/genetics , Animals , Cell Adhesion , Cell Differentiation , Cluster Analysis , Gene Expression Profiling , Polymerase Chain Reaction , RNA, Messenger/genetics , RNA, Small Untranslated/genetics , Respiratory Burst , Software , Up-Regulation
7.
J Exp Biol ; 222(Pt 22)2019 11 27.
Article En | MEDLINE | ID: mdl-31645375

In fishes, the effect of O2 limitation on cardiac mitochondrial function remains largely unexplored. The sablefish (Anoplopoma fimbria) encounters considerable variations in environmental oxygen availability, and is an interesting model for studying the effects of hypoxia on fish cardiorespiratory function. We investigated how in vivo hypoxia acclimation (6 months at 40% then 3 weeks at 20% air saturation) and in vitro anoxia-reoxygenation affected sablefish cardiac mitochondrial respiration and reactive oxygen species (ROS) release rates using high-resolution fluorespirometry. Further, we investigated how hypoxia acclimation affected the sensitivity of mitochondrial respiration to nitric oxide (NO), and compared mitochondrial lipid and fatty acid (FA) composition between groups. Hypoxia acclimation did not alter mitochondrial coupled or uncoupled respiration, or respiratory control ratio, ROS release rates, P50 or superoxide dismutase activity. However, it increased citrate synthase activity (by ∼20%), increased the sensitivity of mitochondrial respiration to NO inhibition (i.e., the NO IC50 was 25% lower), and enhanced the recovery of respiration (by 21%) and reduced ROS release rates (by 25-30%) post-anoxia. In addition, hypoxia acclimation altered mitochondrial FA composition [increasing arachidonic acid (20:4ω6) and eicosapentaenoic acid (20:5ω3) proportions by 11 and 14%, respectively], and SIMPER analysis revealed that the phospholipid:sterol ratio was the largest contributor (24%) to the dissimilarity between treatments. Overall, these results suggest that hypoxia acclimation may protect sablefish cardiac bioenergetic function during or after periods of O2 limitation, and that this may be related to alterations in mitochondrial sensitivity to NO and to adaptive changes in membrane composition (fluidity).


Hypoxia/physiopathology , Mitochondria/metabolism , Nitric Oxide/pharmacology , Perciformes/physiology , Acclimatization , Animals , Fatty Acids/analysis , Heart Ventricles/physiopathology , Lipids/analysis , Mitochondria/chemistry , Oxygen/metabolism , Perciformes/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
8.
J Nutr ; 148(3): 358-363, 2018 03 01.
Article En | MEDLINE | ID: mdl-29546303

Background: Formate is produced in mitochondria via the catabolism of serine, glycine, dimethylglycine, and sarcosine. Formate produced by mitochondria may be incorporated into the cytosolic folate pool where it can be used for important biosynthetic reactions. Previous studies from our lab have shown that cobalamin deficiency results in increased plasma formate concentrations. Objective: Our goal was to determine the basis for elevated formate in vitamin B-12 deficiency. Methods: Male Sprague Dawley rats were randomly assigned to consume either a cobalamin-replete (50 µg cobalamin/kg diet) or -deficient (no added cobalamin) diet for 6 wk. Formate production was measured in vivo and in isolated liver mitochondria from a variety of one-carbon precursors. We also measured the oxidation of [3-14C]-l-serine to 14CO2 in isolated rat liver mitochondria and the expression of hepatic genes involved in one-carbon unit and formate metabolism. Results: Cobalamin-deficient rats produce formate at a rate 55% higher than that of replete rats. Formate production from serine was increased by 60% and from dimethylglycine and sarcosine by ∼200% in liver mitochondria isolated from cobalamin-deficient rats compared with cobalamin-replete rats. There was a 26% decrease in the 14CO2 produced by mitochondria from cobalamin-deficient rats. Gene expression analysis showed that 10-formyltetrahydrofolate dehydrogenase-cytosolic (Aldh1l1) and mitochondrial (Aldh1l2) expression were decreased by 40% and 60%, respectively, compared to control, while 10-formyltetrahydrofolate synthetase, mitochondrial, monofunctional (Mthfd1l) expression was unchanged. Conclusion: We propose that a bifurcation in mitochondrial one-carbon metabolism is a key control mechanism in determining the fate of one-carbon units, to formate or CO2. During cobalamin deficiency in rats the disposition of 10-formyl-tetrahydrofolate carbon is shifted in favor of formate production. This may represent a mechanism to generate more one-carbon units for the replenishment of the S-adenosylmethionine pool which is depleted in this condition.


Carbon/metabolism , Formates/metabolism , Liver/metabolism , Mitochondria, Liver/metabolism , Vitamin B 12 Deficiency/complications , Vitamin B 12/blood , Animals , Carbon Dioxide/metabolism , Cytosol/metabolism , Folic Acid/blood , Glycine/metabolism , Male , Oxidation-Reduction , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Random Allocation , Rats, Sprague-Dawley , S-Adenosylmethionine/metabolism , Sarcosine/metabolism , Serine/metabolism , Vitamin B 12 Deficiency/blood
9.
J Exp Biol ; 220(Pt 16): 2970-2979, 2017 08 15.
Article En | MEDLINE | ID: mdl-28596211

There is a wide interspecific range in plasma glucose levels in teleosts from less than 0.5 to greater than 10 mmol l-1 Here we assessed how glucose availability influences glucose metabolism in hearts of Atlantic cod (Gadus morhua), rainbow trout (Oncorhynchus mykiss), lumpfish (Cyclopterus lumpus) and short-horned sculpin (Myoxocephalus scorpius) under normoxic and hypoxic conditions. These species had plasma glucose levels of 5.1, 4.8, 0.9 and 0.5 mmol l-1, respectively. Rates of glucose metabolism and lactate production were determined in isolated hearts perfused with medium containing physiological levels of glucose. Under normoxic conditions there was no significant difference in rates of either glucose metabolism (average 15 nmol g-1 min-1) or lactate production (average 30 nmol g-1 min-1) across species. Under hypoxia (12% of air saturation) there were significant increases in rates of glucose metabolism and lactate production in hearts from Atlantic cod (glucose-130; lactate-663 nmol g-1 min-1) and rainbow trout (glucose-103; lactate-774 nmol g-1 min-1); however, there was no change in rate of glucose metabolism in hearts from either lumpfish or short-horned sculpin and only increases in lactate production to rates much lower than the other species. Furthermore, Atlantic cod hearts perfused with medium containing low non-physiological levels of glucose (0.5 mmol l-1) had the same rates of glucose metabolism under normoxic and hypoxic treatments. Anaerobic metabolism supported by extracellular glucose is compromised in fish with low levels of plasma glucose, which in turn may decrease performance under oxygen-limiting conditions at the whole-animal level.


Blood Glucose/metabolism , Fishes/metabolism , Lactic Acid/metabolism , Myocardium/metabolism , Anaerobiosis , Animals , Gadus morhua/metabolism , Oncorhynchus mykiss/metabolism
10.
J Exp Biol ; 219(Pt 17): 2763-73, 2016 09 01.
Article En | MEDLINE | ID: mdl-27401755

The gas gland of physoclistous fish utilizes glucose to generate lactic acid that leads to the off-loading of oxygen from haemoglobin. This study addresses characteristics of the first two steps in glucose utilization in the gas gland of Atlantic cod (Gadus morhua). Glucose metabolism by isolated gas gland cells was 12- and 170-fold higher, respectively, than that in heart and red blood cells (RBCs) as determined by the production of (3)H2O from [2-(3)H]glucose. In the gas gland, essentially all of the glucose consumed was converted to lactate. Glucose uptake in the gas gland shows a very high dependence upon facilitated transport as evidenced by saturation of uptake of 2-deoxyglucose at a low extracellular concentration and a requirement for high levels of cytochalasin B for uptake inhibition despite the high efficacy of this treatment in heart and RBCs. Glucose transport is via glucose transporter 1 (GLUT1), which is localized to the glandular cells. GLUT1 western blot analysis from whole-tissue lysates displayed a band with a relative molecular mass of 52 kDa, consistent with the deduced amino acid sequence. Levels of 52 kDa GLUT1 in the gas gland were 2.3- and 33-fold higher, respectively, than those in heart and RBCs, respectively. Glucose phosphorylation is catalysed by hexokinase Ib (HKIb), a paralogue that cannot bind to the outer mitochondrial membrane. Transcript levels of HKIb in the gas gland were 52- and 57-fold more abundant, respectively, than those in heart and RBCs. It appears that high levels of GLUT1 protein and an unusual isoform of HKI are both critical for the high rates of glycolysis in gas gland cells.


Animal Structures/metabolism , Gadus morhua/anatomy & histology , Gadus morhua/metabolism , Gases/metabolism , Glucose Transporter Type 1/metabolism , Glucose/metabolism , Hexokinase/metabolism , Animal Structures/cytology , Animals , Cell Separation , Cytochalasin B/pharmacology , Deoxyglucose/metabolism , Erythrocytes/metabolism , Immunohistochemistry , Lactic Acid/metabolism , Molecular Weight , Protein Transport/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
J Exp Biol ; 219(Pt 9): 1384-93, 2016 05 01.
Article En | MEDLINE | ID: mdl-26944490

Fish exhibit a wide range of species-specific blood glucose levels. How this relates to glucose utilization is yet to be fully realized. Here, we assessed glucose transport and metabolism in myocytes isolated from Atlantic cod (Gadus morhua) and short-horned sculpin (Myoxocephalus scorpius), species with blood glucose levels of 3.7 and 0.57 mmol l(-1), respectively. Glucose metabolism was assessed by the production of (3)H2O from [2-(3)H]glucose. Glucose metabolism was 3.5- to 6-fold higher by myocytes from Atlantic cod than by those from short-horned sculpin at the same level of extracellular glucose. In Atlantic cod myocytes, glucose metabolism displayed what appears to be a saturable component with respect to extracellular glucose, and cytochalasin B inhibited glucose metabolism. These features revealed a facilitated glucose diffusion mechanism that accounts for between 30% and 55% of glucose entry at physiological levels of extracellular glucose. Facilitated glucose diffusion appears to be minimal in myocytes for short-horned sculpin. Glucose entry by simple diffusion occurs in both cell types with the same linear relationship between glucose metabolism and extracellular glucose concentration, presumably due to similarities in membrane composition. Oxygen consumption by myocytes incubated in medium containing physiological levels of extracellular glucose (Atlantic cod 5 mmol l(-1), short-horned sculpin 0.5 mmol l(-1)) was similar in the two species and was not decreased by cytochalasin B, suggesting that these cells have the capability of oxidizing alternative on-board metabolic fuels. Cells produced lactate at low rates but glycogen levels did not change during the incubation period. In cells from both species, glucose utilization assessed by both simple chemical analysis of glucose disappearance from the medium and (3)H2O production was half the rate of lactate production and as such extracellular glucose was not available for oxidative metabolism. Overall, extracellular glucose makes only a minor contribution to ATP production but a sustained glycolysis may be necessary to support Ca(2+) transport mechanisms at either the sarcoplasmic reticulum or the sarcolemmal membrane.


Gadus morhua/physiology , Glucose/metabolism , Lactic Acid/metabolism , Perciformes/physiology , Aerobiosis , Animals , Biological Transport , Blood Glucose/analysis , Blood Glucose/metabolism , Gadus morhua/blood , Myocytes, Cardiac/metabolism , Oxygen Consumption , Perciformes/blood
12.
Article En | MEDLINE | ID: mdl-25981700

Aquaglyceroporins (GLPs) are integral membrane proteins that facilitate passive movement of water, glycerol and urea across cellular membranes. In this study, GLP-encoding genes were characterized in rainbow smelt (Osmerus mordax mordax), an anadromous teleost that accumulates high glycerol and modest urea levels in plasma and tissues as an adaptive cryoprotectant mechanism in sub-zero temperatures. We report the gene and promoter sequences for two aqp10b paralogs (aqp10ba, aqp10bb) that are 82% identical at the predicted amino acid level, and aqp9b. Aqp10bb and aqp9b have the 6 exon structure common to vertebrate GLPs. Aqp10ba has 8 exons; there are two additional exons at the 5' end, and the promoter sequence is different from aqp10bb. Molecular phylogenetic analysis suggests that the aqp10b paralogs arose from a gene duplication event specific to the smelt lineage. Smelt GLP transcripts are ubiquitously expressed; however, aqp10ba transcripts were highest in kidney, aqp10bb transcripts were highest in kidney, intestine, pyloric caeca and brain, and aqp9b transcripts were highest in spleen, liver, red blood cells and kidney. In cold-temperature challenge experiments, plasma glycerol and urea levels were significantly higher in cold- compared to warm-acclimated smelt; however, GLP transcript levels were generally either significantly lower or remained constant. The exception was significantly higher aqp10ba transcript levels in kidney. High aqp10ba transcripts in smelt kidney that increase significantly in response to cold temperature in congruence with plasma urea suggest that this gene duplicate may have evolved to allow the re-absorption of urea to concomitantly conserve nitrogen and prevent freezing.


Aquaglyceroporins/genetics , Aquaglyceroporins/metabolism , Cold Temperature , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation , Osmeriformes/genetics , Amino Acid Sequence , Animals , Aquaglyceroporins/chemistry , Cloning, Molecular , Exons/genetics , Fish Proteins/chemistry , Glycerol/blood , Kidney/metabolism , Molecular Sequence Data , Organ Specificity , Osmeriformes/blood , Osmeriformes/metabolism , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seasons , Urea/blood
13.
J Exp Biol ; 217(Pt 21): 3797-804, 2014 Nov 01.
Article En | MEDLINE | ID: mdl-25214484

Energy metabolism was assessed in red blood cells (RBCs) from Atlantic cod and short-horned sculpin, two species that have markedly different levels of blood glucose. The objective was to determine whether the level of extracellular glucose has an impact on rates of glucose metabolism. The blood glucose level was 2.5 mmol l(-1) in Atlantic cod and 0.2 mmol l(-1) in short-horned sculpin, respectively. Oxygen consumption, lactate production and glucose utilization were measured in whole blood and related to grams of RBCs. Glucose utilization was assessed by measuring both glucose disappearance and the production of (3)H2O from [2-(3)H]-glucose. RBCs from both species have an aerobic-based metabolism. In Atlantic cod, extracellular glucose is sufficient to provide the sum of glucosyl equivalents to support both oxidative metabolism and lactate production. In contrast, extracellular glucose can account for only 10% of the metabolic rate in short-horned sculpin RBCs. In both species, about 70% of glucose enters the RBCs via facilitated transport. The difference in rates of extracellular glucose utilization is related to the extremely low levels of blood glucose in short-horned sculpin. In this species energy metabolism by RBCs must be supported by alternative fuels.


Energy Metabolism/physiology , Erythrocytes/metabolism , Extracellular Space/metabolism , Gadus morhua/physiology , Glucose/metabolism , Perciformes/physiology , Animals , Gadus morhua/metabolism , Glycogen/metabolism , Lactic Acid/metabolism , Oxygen Consumption/physiology , Perciformes/metabolism , Species Specificity
14.
J Comp Physiol B ; 184(4): 483-96, 2014 May.
Article En | MEDLINE | ID: mdl-24553996

GLUTs 1-4 are sodium-independent facilitated glucose transporters and are considered to play a major role in glucose trafficking. The relative transcript levels of GLUTs 1-4 were determined in tissues of Atlantic cod (Gadus morhua). The distribution profile of GLUTs normalized to RNA is similar to mammals and with a few exceptions other fish. GLUT1 is ubiquitous, GLUT2 is relatively abundant in tissues that release glucose, GLUT3 expression is relatively strong in brain, and GLUT4 is relatively high in heart and muscle. The functionally significant level of transcript is presumably the level in the cell. Normalization of relative GLUT levels to tissue mass reveals there are extremely high levels of GLUT1 transcript in gas gland consistent with the high lactate production rates, GLUT3 is dominant in gill and head kidney as well as brain, and GLUT4 expression in gill is elevated relative to other tissues. Consideration of GLUTs within tissues reveals that GLUT1 is the dominant transcript in a group of tissues including gas gland, heart, white muscle, and RBCs. Brain, gill, and spleen display a co-dominance of GLUTs 1 and 3. There are relatively low levels of GLUT4 in most tissues, the highest being found in white muscle where GLUT4 accounts for only 12 % of the total transcript level. The apparent low level of GLUT4 transcript may reflect two tissues that were not included in the current study, red muscle and adipose tissue, due to their low abundance in Atlantic cod. The rate of glucose metabolism in isolated cells prepared from gas gland, heart, and RBCs was determined by tracking the rate of (3)H2O production from [2-(3)H]-glucose. The steady-state rate of basal glycolysis in these three tissues correlates with relative transcript levels of GLUT1.


Gadus morhua/metabolism , Glucose Transport Proteins, Facilitative/classification , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transporter Type 1/metabolism , Glucose/metabolism , Transcription, Genetic/physiology , Adipose Tissue/metabolism , Animals , Brain/metabolism , Glucose Transport Proteins, Facilitative/genetics , Glucose Transporter Type 1/genetics , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 3/genetics , Glucose Transporter Type 3/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Kidney/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism
15.
J Exp Biol ; 216(Pt 3): 437-46, 2013 Feb 01.
Article En | MEDLINE | ID: mdl-23038726

The aim of the present study was to assess whether mechanisms of glucose trafficking by red blood cells (RBCs) relate to species-specific extracellular glucose levels. Atlantic cod (Gadus morhua), Atlantic salmon (Salmo salar), cunner (Tautogolabrus adspersus) and short-horned sculpin (Myoxocephalus scorpius) had plasma glucose levels of 4, 4.1, 1.95 and 0.73 mmol l(-1), respectively. Glucose uptake by isolated RBCs was measured by the initial incorporation of [6-(14)C]-glucose and steady-state glucose metabolism was determined by the production of (3)H(2)O from [2-(3)H]-glucose. Saturation kinetics of glucose uptake and inhibition of both glucose uptake and metabolism by cytochalasin B and phloretin revealed that Atlantic cod, cunner and sculpin RBCs all had a facilitated transport component to glucose trafficking. RBCs from Atlantic salmon showed a linear relationship between glucose uptake and extracellular glucose level, but exhibited clear inhibition of glucose metabolism by cytochalasin B and phloretin, suggesting a component of facilitated glucose transport that is more elusive to detect. The production of (3)H(2)O was linear for at least 6 h and as such presents a rigorous approach to measuring glycolytic rate. Steady-state rates of glucose metabolism were achieved at extracellular levels of approximately 1 mmol l(-1) glucose for RBCs from all species, showing that within-species normal extracellular glucose level is not a primary determinant of the basal level of glycolysis. At physiological levels of extracellular glucose, the ratio of initial glucose uptake to glucose metabolism was 1.5 to 4 for all RBCs, suggesting that there is scope to increase metabolic rate without alteration of the basal glucose uptake capacity.


Erythrocytes/metabolism , Gadus morhua/metabolism , Glucose/metabolism , Perciformes/metabolism , Salmo salar/metabolism , Animals , Biological Transport , Blood Glucose/metabolism , Cytochalasin B/metabolism , Fish Proteins/metabolism , Phloretin/metabolism
16.
Am J Physiol Regul Integr Comp Physiol ; 302(8): R1012-21, 2012 Apr 15.
Article En | MEDLINE | ID: mdl-22319051

Rainbow smelt (Osmerus mordax) is a small fish that accumulates glycerol at low winter seawater temperatures. In laboratory-held fish, glycerol concentration typically reaches 225 mM in plasma and in all cells. Glycerol uptake by the heart and red blood cells (RBCs) was assessed by tracking [(14)C(U)]glycerol into the acid-soluble pool. In fish acclimated to 9-10°C a decrease in perfusion/incubation temperature from 8 to 1°C resulted in a decrease in glycerol uptake with a Q(10) of 3.2 in heart and 2.4 in RBCs. Acclimation to ∼1.5°C did not result in an adaptive enhancement of glycerol uptake as rates were unchanged in heart and RBCs. Glycerol uptake at 1°C was by passive diffusion in heart as evidenced by a linear relationship between glycerol uptake and extracellular glycerol concentration and a lack of inhibition by phloretin. In contrast, in RBCs, glycerol uptake with respect to glycerol concentration showed two linear relationships with a transition point around 50 mM extracellular glycerol. The slope of the second phase was much steeper and eliminated with the inclusion of phloretin. In RBCs from Atlantic salmon (Salmo salar), a related species that does not accumulate glycerol, glycerol uptake showed only a single linear curve and was not inhibited by phloretin. The data imply a strong facilitated component to glycerol uptake in rainbow smelt RBCs at high glycerol concentrations. We propose this is related to cyclic changes in RBC glycerol content involving a loss of glycerol at the gill and a reaccumulation during passage through the liver.


Erythrocytes/metabolism , Glycerol/metabolism , Myocardium/metabolism , Osmeriformes/metabolism , Animals , Biological Transport , Diffusion , Permeability
17.
Mol Vis ; 17: 2596-604, 2011.
Article En | MEDLINE | ID: mdl-22025894

PURPOSE: The rainbow smelt (Osmerus mordax), is a teleost fish, which avoids freezing by becoming virtually isosmotic with seawater. The effects that such massive changes in osmolarity have on both its visual system and its highly evolved and specialized circulation are not known. New knowledge about the osmotic adaptation of the rainbow smelt eye is highly relevant to the adaptation and survival of this species and to its ability to feed as a visual predator in the face of environmental pressures. Moreover, the molecular physiologic response of the smelt to osmotic stress might provide valuable insights into understanding and managing mammalian pathological hyperosmolarity conditions, such as diabetes. We undertook the present study to provide an initial assessment of gene expression in ocular vasculature during osmotic adaptation in rainbow smelt. METHODS: Immunohistochemistry with species cross reactive antibodies was used to assess blood vessel protein expression in paraffin sections. Western blotting was used to further verify antibody specificity for orthologs of mammalian blood vessel proteins in rainbow smelt. Thermal hysteresis and the analysis of glycerol concentrations in vitreous fluid were used to assess the physiologic adaptive properties of cold stressed eyes. RESULTS: Glycerol levels and osmotic pressure were significantly increased in the vitreal fluid of smelt maintained at <0.5 °C versus those maintained at 8-10 °C. Compared to the 8-10 °C adapted specimens, the rete mirabile blood vessels and connecting regions of the endothelial linings of the choroidal vessels of the <0.5 °C adapted specimens showed a higher expression level of Tubedown (Tbdn) protein, a marker of the endothelial transcellular permeability pathway. Expression of the zonula occludens protein ZO-1, a marker of the endothelial paracellular permeability pathway showed a reciprocal expression pattern and was downregulated in rete mirabile blood vessels and connecting regions in the endothelial linings of choroidal vessels in <0.5 °C adapted specimens. Smelt orthologs of the mammalian Tbdn and zoluna occludens protein 1 (ZO-1) proteins were also detected by western blotting using anti-mammalian antibodies raised against the same epitopes as those used for immunohistochemistry. CONCLUSIONS: This work provides the first evidence that molecules known to play a role in ocular vascular homeostasis are expressed and may be differentially regulated during anti-freezing cold adaptation in smelt eyes. We propose a hypothesis that in a state of cold-induced hyperosmolarity, changes in ZO-1 expression are associated with the passage of small solutes from the plasma space to ocular fluid, while changes in Tbdn expression regulate the passage of proteins between the ocular fluid and plasma space. This work also provides fundamental insight into the mechanisms underlying the adaptation of the blood-retinal barrier to metabolically relevant compounds such as glycerol.


Adaptation, Physiological , Antifreeze Proteins/biosynthesis , Aquatic Organisms/physiology , Fish Proteins/biosynthesis , Glycerol/blood , Osmeriformes/physiology , Animals , Antifreeze Proteins/genetics , Biomarkers/metabolism , Blood Vessels/metabolism , Blood-Retinal Barrier/metabolism , Blotting, Western , Cold Temperature , Fish Proteins/genetics , Freezing , Gene Expression Regulation , Immunohistochemistry , Osmolar Concentration , Osmotic Pressure/physiology , Vitreous Body/metabolism
18.
Am J Physiol Regul Integr Comp Physiol ; 301(4): R995-R1010, 2011 Oct.
Article En | MEDLINE | ID: mdl-21734021

Rainbow smelt (Osmerus mordax) avoid freezing by producing antifreeze protein (AFP) and accumulating glycerol. Glyceroneogenesis occurs in liver via a branch in glycolysis and gluconeogenesis and is activated by low temperature. Hepatocytes were isolated from the livers of fish acclimated to 8°C. Cells were incubated at warm (8°C; nonglycerol accumulating) or cold (0.4°C; glycerol accumulating) temperature over a 72-h time course. Reciprocal suppression subtractive hybridization libraries enriched for cold-responsive transcripts were constructed at 72 h. Microarray analyses using a 16K salmonid cDNA array were performed at 24, 48, and 72 h. Expression of type II AFP and 21 carbohydrate, amino acid, or lipid metabolism-related transcripts were validated using quantitative RT-PCR. Type II AFP transcript levels were not directly temperature related. In cold cells, levels of the glucose synthesis transcript were transiently higher. Increased glycerol production was not associated with increased phosphofructokinase or cytosolic glycerol-3-phosphate dehydrogenase transcript levels. Levels of transcripts (phosphoenolpyruvate carboxykinase, mitochondrial malate dehydrogenase, alanine aminotransferase, glutamate dehydrogenase, and aquaglyceroporin 9) associated with mobilization of amino acids to fuel glycerol accumulation were all transiently higher, suggesting a common regulatory mechanism. In cold compared with warm cells, pyruvate dehydrogenase kinase [an inhibitor of pyruvate dehydrogenase (PDH)] transcript levels were 20-fold higher. Potent inhibition of PDH would direct pyruvate and oxaloacetate derived from amino acids to glycerol, as opposed to oxidation via the citric acid cycle. Levels of a transcript potentially encoding glycerol-3-phosphatase, an enzyme not yet characterized in any vertebrate species, were higher following cold incubation. Finally, this study also presents the novel finding of increased glutamine synthetase transcript levels in response to low temperature.


Cold Temperature , Glycerol/metabolism , Hepatocytes/metabolism , Osmeriformes/genetics , Osmeriformes/physiology , Transcriptome/genetics , Transcriptome/physiology , Amino Acids/metabolism , Animals , Antifreeze Proteins, Type II/metabolism , Carbohydrate Metabolism/physiology , Cells, Cultured , Gene Expression Profiling , Glutamate-Ammonia Ligase/metabolism , Hepatocytes/cytology , Male , Models, Animal , Oligonucleotide Array Sequence Analysis , Protein Serine-Threonine Kinases/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Reproducibility of Results
19.
Am J Physiol Endocrinol Metab ; 298(6): E1219-25, 2010 Jun.
Article En | MEDLINE | ID: mdl-20332361

The hyperinsulism/hyperammonemia (HI/HA) syndrome is caused by glutamate dehydrogenase (GDH) gain-of-function mutations that reduce the inhibition by GTP, consequently increasing the activity of GDH in vivo. The source of the hyperammonemia in the HI/HA syndrome remains unclear. We examined the effect of systemic activation of GDH on ammonia metabolism in the rat. 2-Aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) is a nonmetabolizable analog of the natural GDH allosteric activator leucine. A dose of 100 mumol BCH/100 g rat resulted in a mild systemic hyperammonemia. Using arterial-venous (A-V) differences, we exclude the liver, intestine, and skeletal muscle as major contributors to this BCH-induced hyperammonemia. However, renal ammonia output increased, as demonstrated by an increase in A-V difference for ammonia across the kidney in BCH-treated animals. Isolated renal cortical tubules incubated with BCH increased the rate of ammoniagenesis from glutamine by 40%. The flux through GDH increased more than twofold when BCH was added to renal mitochondria respiring on glutamine. The flux through glutaminase was not affected by BCH, whereas glutamate-oxaloacetate transaminase flux decreased when normalized to glutaminase flux. These data show that increased renal ammoniagenesis due to activation of GDH can explain the BCH-induced hyperammonemia. These results are discussed in relation to the organ source of the ammonia in the HI/HA syndrome as well as the role of GDH in regulating renal ammoniagenesis.


Glutamate Dehydrogenase/metabolism , Hyperammonemia/metabolism , Hyperinsulinism/metabolism , Kidney/metabolism , Animals , Aspartate Aminotransferase, Mitochondrial/metabolism , Enzyme Activation , Glutamate Dehydrogenase/genetics , Glutaminase/metabolism , Hyperammonemia/enzymology , Hyperammonemia/urine , Hyperinsulinism/enzymology , In Vitro Techniques , Kidney/enzymology , Male , Mitochondria/metabolism , Rats , Rats, Sprague-Dawley
20.
J Nutr ; 138(9): 1641-6, 2008 Sep.
Article En | MEDLINE | ID: mdl-18716163

The time course of betaine accumulation and activities of enzymes involved in betaine metabolism were studied in developing rats. In study 1, pups weaned on a nonpurified diet had a transient increase in liver and kidney betaine content followed by a decline after approximately 42-56 d. In study 2, dams and, following weaning, pups were fed an AIN-93G (betaine-free) or an AIN-93G betaine-supplemented diet (0.3%) to determine the source of the transient increase in betaine levels previously observed. In study 2, only rats fed betaine had an increase in plasma betaine concentration. Similarly, liver and kidney betaine contents increased postweaning; however, betaine levels returned to that found in rats fed a betaine-free diet by 49 d of age. The dietary content of betaine fed to dams did not affect pup betaine. The activities of choline dehydrogenase, an enzyme of betaine synthesis, and betaine:homocysteine methyltransferase (BHMT), which is the only known betaine-consuming enzyme in mammals, were also measured in study 2. Liver BHMT activity decreased after weaning, whereas liver and kidney choline dehydrogenase activity increased with age, possibly reaching a plateau by 42 d of age. We conclude that the transient increase in betaine reflects high dietary betaine and not a change in endogenous betaine synthesis.


Betaine/metabolism , Diet , Aging , Animals , Betaine/administration & dosage , Dietary Supplements , Dose-Response Relationship, Drug , Female , Male , Rats , Rats, Sprague-Dawley
...